Wesley Silva Soares

Utilizacao de um ambiente virtual didatico para

o ensino de programacao para CLPs

Brasil

2021, v-0.1

Wesley Silva Soares

Utilizacao de um ambiente virtual didatico para o ensino

de programacao para CLPs

Trabalho de conclusao de curso apresentado
a Escola Politécnica da Universidade de Sao
Paulo, a fim de obter o titulo de Engenheiro
Mecatronico

Universidade de Sdo Paulo — USP

Escola Politécnica

Orientador: Prof. Dr. Marcos Ribeiro Pereira Barretto

Brasil

2021, v-0.1

Autorizo a reproducéo e divulgacao total ou parcial deste trabalho, por qualquer meio
convencional ou eletrdnico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogacao-na-publicacéo

Soares, Wesley

Utilizacdo de um ambiente virtual didatico para o ensino de programacao
para CLPs / W. Soares -- Sdo Paulo, 2021.

50 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao
Paulo. Departamento de Engenharia Mecatrénica e de Sistemas Mecénicos.

1.Treinamento para CLPs 2.Fabrica virtual I.Universidade de S&o Paulo.
Escola Politécnica. Departamento de Engenharia Mecatrdnica e de Sistemas
Mecénicos I1.t.

Wesley Silva Soares

Utilizacao de um ambiente virtual didatico para o ensino
de programacao para CLPs

Trabalho de conclusao de curso apresentado
a Escola Politécnica da Universidade de Sao
Paulo, a fim de obter o titulo de Engenheiro
Mecatronico

Prof. Dr. Marcos Ribeiro Pereira
Barretto
Orientador

Professor
Convidado 1

Professor
Convidado 2

Brasil
2021, v-0.1

A Aline, por ser a pessoa a quem devo tudo,
ao Jorge, por ser o meu exemplo,
Pamela por estar ao meu lado,

Dedico este trabalho.

Agradecimentos

Primeiramente, agradeco a Deus.

Aos Professores e funcionarios do departamento de Engenharia Mecatronica da
Escola Politécnica, principalmente ao professor Marcos Barretto pela orientagao no trabalho.

E ao funcionario Céssio pela disponibilidade e atencao quando precisei.

Agradeco, também, aos meus amigos de longa data, pelo apoio e incentivo durante

a criacao deste trabalho.

Resumo

Cada vez mais, processos industriais utilizam alguma forma de automagao. O uso de
automacao na industria aumenta a eficiéncia dos processos, reduzindo custos e uso de
materiais, além de reduzir riscos aos operadores. Para isso, a formacao de um profissional
da area deve ser solida, abrangendo satisfatoriamente os conceitos relevantes ao tema, como
programacao de CLPs, Controladores Légico Programéaveis, por exemplo. Atualmente, o
ensino pode ser feito por meio de aparatos fisicos em laboratorio, que possuem alto custo
financeiro, além de necessitar que o aluno esteja presente no local do experimento. Outra
abordagem é a utilizagdo de ferramentas comerciais de simulacao que facilitam o acesso dos
alunos a tipos diferentes cenérios de treinamento possiveis, porém, no contexto didatico,
também tem custo elevado de aquisicao. Visto isso, neste trabalho é proposta uma solucao
que pode auxiliar o ensino de automacao industrial, de forma virtual e que sua aplicacao
seja economicamente viavel. Que simula cenas compostas por componentes comuns ao
ambientes de producao industrial. Para isso, foi utilizada a plataforma de desenvolvimento
de simulagoes 3D Unity e comunicacao com controladores externos por meio do protocolo

modbus.

Palavras-chaves: Treinamento para CLPs. Fabrica virtual. Ambiente de aprendizagem.

Abstract

More and more, industrial processes use some type of automation. The use of industrial
automation raises the process efficiency, reducing costs and material needs, in addition to
reducing operating health risks. For that, the formation of a professional in automation must
be solid, covering the subject relevant concepts, like, as an example, PLC (Programmable
Logic Controller) programming, in a satisfactory way. Nowadays, the learning can be done
using laboratory physical components, that have high costs, in addition to the need that
the students have to be in the laboratory. Another approach consists in using commercial
simulation tools, making the student access easier to more possible training scenarios,
however, in a didactic context, also have a high implementation cost. With that said,
in this paper is proposed a solution that can be used as an auxiliary in the teaching
of industrial automation, virtually and being cost effective. Simulating scenes that have
virtual components commonly seen in industrial contexts. For that, the 3D development
engine Unity was used along with the Modbus protocol in order to communicate with

external controllers.

Key-words: PLC Training. Virtual factory. Learning environment.

Lista de ilustracoes

Figura 1 — COMOS Walkinside 19
Figura 2 — Uso do FactorylO para representar um modelo fisico 20
Figura 3 — OpenPLC - Ambiente de desenvolvimento 21
Figura 4 — Unity - Ambiente de desenvolvimento 22
Figura 5 — Unity - Detalhe das abas de propriedades utilizadas 23
Figura 6 — Unity -Detalhe da aba decena 23
Figura 7 — Alimentador 26
Figura 8 — Balanga 27
Figura 9 — Caixa e Copo 28
Figura 10 — Desviador L 29
Figura 11 — Esteira e Rampa 30
Figura 12 — Manipulador 31
Figura 13 — Piso 32
Figura 14 — Sensor 33
Figura 15 — Spawner 34
Figura 16 — GUL o e 35
Figura 17 — Visdo da Cena 1 Sorter 41
Figura 18 — Visao da Cena 2 - Loader | Crane 42
Figura 19 — Variaveis do programa de controle do Sorter 43
Figura 20 — Programa de controle do Sorter 43
Figura 21 — Variaveis do programa de controle da Cena 2 - Manipulador 44
Figura 22 — Programa de controle da Cena 2 - Manipulador 44
Figura 23 — Variaveis do programa de controle da Cena 2 - Loader 44

Figura 24 — Programa de controle da Cena 2 - Loader 45

Lista de tabelas

Tabela 1 — Resumo das respostas sobre linguagens de programacao. 14
Tabela 2 — Resumo das respostas sobre linguagens usadas em CLPs 14
Tabela 3 — Propriedades do Alimentador 26
Tabela 4 — Propriedades da Balanga 27
Tabela 5 — Propriedades da Caixa 28
Tabela 6 — Propriedades do Copo 29
Tabela 7 — Propriedades do Desviador 29
Tabela 8 — Propriedades da Esteira 30
Tabela 9 — Propriedades do Manipulador 31
Tabela 10 — Propriedades do Piso 32
Tabela 11 — Propriedades do Sensor 33

Tabela 12 — Propriedades do Spawner 34

CLP

LD

FBD

OPC

SEFC

ST

Lista de abreviaturas e siglas

Controlador Légico Programavel
Ladder Diagram

Function Block Diagram

Open Platform Communications
Sequential Function Chart

Structured Text

1.1
1.2

2.1
2.2
221
222

3.1
3.2
3.3

4.1
4.2
421
422
4.2.3
424
425
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.3
43.1
4.3.2
43.3
4.3.4
4.3.5
4.3.6
4.3.7

Sumario

INTRODUCAOttt e e e 13
Motivacao 13
Objetivo 14
REVISAO BIBLIOGRAFICA« i 15
Trabalhos Relacionados 15
Ferramentas comerciais L. 19
COMOS Walkinside 19
FactorylO 20
FERRAMENTAS UTILIZADAS 21
OpenPLC e 21
Unity e 22
EasyModbus 24
SOLUCAO PROPOSTA ittt e e e et e et e i e e 25
Visaogeral 25
Projeto de componentes 25
Alimentador 26
Balanca oL 27
Caixa e 28
Desviador 29
Esteirae Rampa 29
Manipulador L 30
Piso e 32
Sensor e 32
Spawner 33
GUI - Interface Gréafica 34
Scripts auxiliares 35
ButtonUl.cs e 36
CameraControl.cs e 36
COPO.CS . . v . e 36
Crane.cs e 36
CubeSpawner.cs 37
Destruidor.cs 37
Esteira.cs e 37

4.3.8
4.3.9
4.3.10
4311
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.4
441
442
4.5
45.1
45.2
45.3

FactoryManager.cs e 37

Feeder.cs e 38
ObjEsteria.cs e 38
PhisAdr.cs e 39
Pivot.cs e 39
RenderOrder.cs 39
Scale.cs e 39
SENSOI.CS . « . v v v i i e e e e e e 39
ShowAddr.cs 39
UpdTextoUl.cs 40
Projetodecenas 40
Cenal-Sorter 40
Cena2-Loader | Crane 40
Programas de controle 41
Programa 1 - Sorter 42
Programa 2 - Crane 43
Programa 3 - Loadero 44
RESULTADOS OBTIDOS ittt it e 46
COMENTARIOS FINAIS ot e e e e e 47

REFERENCIAS o e e e e e e e e e e e s 48

13

1 Introducao

1.1 Motivacao

A industria esta cada vez mais ligada a processos que aplicam alguma forma de
automacao. O aumento da eficiéncia proporcionado por um controle automatizado oferece
reducao do custo financeiro, melhora da qualidade de vida dos funcionarios e oferece reducao
do impacto ambiental, como redugao do uso de insumos e de energia. A automatizacao de
uma planta pode substituir maquinas antigas, pouco eficientes energeticamente, por outras
mais modernas que necessitam de menos energia e com maior produtividade. Atividades
repetitivas, executadas por pessoas, sao substituidas por maquinas capazes de trabalhar
com mais velocidade e repetibilidade, evitando que pessoas sejam expostas a potenciais
danos, como lesoes por esforgo (1). Além disso, o processo automatizado aumenta o nivel
de seguranca de uma planta industrial, pois pode gerar alertas com antecedéncia e executar
procedimentos de emergéncia caso algo esteja fora de parametros seguros de operacao
previamente estabelecidos. Para isso, uma tecnologia largamente utilizada sao os CLPs,
Controladores Légicos Programéveis, dispositivos que, de acordo com as varidveis de
entrada, executam rotinas pré estabelecidas e geram saidas para controlar um sistema.

Dito isso, para que a formacao de um engenheiro que atua na area de automacao

seja satisfatoria, é necessario que se tenha familiaridade com essas tecnologias.

Em uma enquete com 48 alunos da Escola Politécnica da USP onde 34 informaram
ser da engenharia mecatronica, 6 da area elétrica e 8 de outras énfases. Destes alunos,

31,1% estavam no sétimo semestre do curso.

O questionario foi uma autoavaliagdo sobre o quao familiarizado o aluno se sentia
com linguagens de programagao que, segundo o indice TIOBE (2), possuem alta populari-
dade. As respostas poderiam ser: Desconheco; Conheco, mas nunca tive contato; Béasico;
Intermediario; Avancado. A Tabela 1 apresenta a porcentagem das respostas que expres-
saram alguma forma de familiaridade, ou seja, basico, intermediario ou avancado. Em
seguida, foi feito o mesmo questionamento, mas relacionado a linguagens de programacao

utilizadas em CLPs. O resultado mostrado na Tabela 2.

Pode-se notar que Python e C/C++ sao as linguagens de melhores resultados
em familiaridade com os alunos, sendo estas usadas em matérias ao longo do curso de
engenharia. Ja, em relacao as utilizadas em CLPs, o quadro se inverte e, a maior parte

dos que responderam, afirmam que desconhecem estas linguagens.

Capitulo 1. Introdugdo 14

Tabela 1 — Resumo das respostas sobre linguagens de programacao

Linguagem Familiaridade

Python 93.75%
Java 35.42%
Javascript 31.25%
C/C++ 81.25%
C# 22.92%
VBA 31.25%
PHP 12.50%
Ruby 33.33%

Fonte: Autor

Tabela 2 — Resumo das respostas sobre linguagens usadas em CLPs

Linguagem Familiaridade
Ladder Diagram 60.42%
Sequantial Flow Charts 45.83%
Function Block Diagram 20.83%
Structured Text 18.75%
Instruction List 14.58%

Fonte: Autor

Atualmente, na Escola Politécnica da USP, para aplicar os conceitos de programacao
para CLPs, sao utilizadas as bancadas didaticas da Festo. Porém, nao ¢é possivel a sua
utilizacao fora do periodo de aula, sendo necessario o acompanhamento de um monitor.
Visto isso, foi proposta a viabilidade da utilizacdo de um ambiente virtual, contendo
elementos de fabrica que interagem com comandos de um controlador, podendo replicar

aspectos das bancadas fisicas, por exemplo.

Por nao necessitar estar em laboratorio, um ambiente virtual é mais acessivel a
alunos interessados em ter mais contato com os conceitos expostos em aula, também possui
maior flexibilidade na modificagdo de cenarios onde solugoes podem ser aplicadas e, além

disso, elimina o disco de danos, por nao possuir componentes fisicos.

1.2 Objetivo

Este trabalho tem o objetivo de montar um ambiente virtual de uma fabrica onde
seja possivel simular didaticamente a programacdo de CLPs para controlar processos
de fabricagao. Similar, as bancadas didaticas presentes em laboratério, porém com mais
flexibilidade de layout de processos e de acesso por nao ser necessario estar presente fisica-
mente para testar o funcionamento. Como prova de conceito, serdo montados dois cenarios
simulando componentes observados em fabricas, como sensores, esteiras e atuadores. Sendo
possivel que um programa externo a este ambiente seja capaz de interagir com os compo-
nentes por meio de um protocolo de comunicacao industrial, nao sendo necessariamente

possivel que este programa "saiba'que nao esta interagindo com componentes reais.

15

2 Revisao Bibliografica

Visto que o objetivo do trabalho ¢ de propor uma alternativa as limitacoes inerentes
ao ensino de programagcao para CLPs, quando se utiliza somente dispositivos fisicos, como
o alto custo dos equipamentos (3) e a necessidade de se estar presente no laboratério, uma
solugao possivelmente viavel é uma ferramenta que possibilite a simulacao de um ambiente
fisico; Possa se comunicar com um programa de controle externo em tempo real e que seja
de baixo custo de implantacao. Essas caracteristicas foram resumidas como "Treinamento
para CLPs", "Fabrica virtual'e "Ambiente de aprendizagem". As palavras-chave "PLC
training", "virtual factory’, e 'learning environment" foram utilizadas nas ferramentas de
busca de artigos cientificos Scopus, Google Scholar e IEEE Ezxplorer entre Marco e Julho
de 2021, e os artigos apresentados neste trabalho foram selecionados por apresentarem

conceitos relevantes ao tema.

2.1 Trabalhos Relacionados

Segundo,(3), "No contexto da Industria 4.0, um dos maiores desafios é como verificar
e validar complexos sistemas automatizados de manufatura, baseados em novas tecnologias
de fabricas inteligentes'. Para eles, por ser geralmente feito nas plantas reais, os teste
com CLPs podem gerar incidentes que vao de atrasos no andamento projeto a danos aos
equipamentos da linha, levando a prejuizos financeiros. Com isso, foi feito o estudo de uma
ferramenta de comissionamento virtual, que funcionasse de forma que a comunicagdo com
CLP fosse feita em tempo real, a fim de reduzir tempo e custos. "Comissionamento virtual
consiste em replicar o comportamento de um ambiente fisico de manufatura usando um
sistema de software com o objetivo de providenciar um ambiente virtual, proporcionando
que engenheiros de automagao/robdtica possam validar suas légicas de automagao (CLP
ou robo controlador) e HMI (Interface Homem Méquina) antes do comissionamento'Tebani

et al.(3).

O estudo apresenta quatro abordagens que podem ser feitas num comissionamento
de uma planta automatizada. A primeira é testar o funcionamento do CLP utilizando
diretamente o controlador real com os equipamentos da planta, situacao que pode causar
danos aos componentes fisicos, caso haja algum erro no programa carregado no controlador.
A segunda é chamada de "Software in the Loop', onde um controlador virtual atua sobre
equipamentos também virtuais, que segundo o estudo, é 1til para a verificacao da robustez
do sistema de controle, porém, como nao contém todas as caracteristicas do sistema real, os
resultados dos testes nao sao tao confidveis comparativamente por nao sem em tempo real.

A terceira abordagem consiste em testar o CLP real em um ambiente virtual a fim de testar

Capitulo 2. Revisao Bibliogrifica 16

o comportamento do controlador antes da sua implementacao real. Finalmente, a quarta
abordagem ¢ testar o software de controle em um CLP virtual, ligado aos componentes da
planta real. Esta ultima abordagem leva a riscos parecidos com a primeira abordagem,

por expor os equipamentos da planta a um programa que nao foi completamente validado.

O estudo também expoe o conceito de Gémeo Digital, Digital Twin, onde é feito
um modelo virtual que simula o comportamento de um sistema fisico real. Com isso, dados
obtidos no modelo virtual sao validados no sistema real, que por sua vez os resultados
sao utilizados para aprimorar o modelo. Foi proposta uma abordagem onde um ambiente
virtual, simulando uma planta real, comunicava-se com um CLP fisico a fim de testar o
comissionamento do software de controle. Com isso, reduzir o tempo do comissionamento
real. Para isso, foi usado a ferramenta de modelagem Dymola para replicar os componentes
fisicos, e suas propriedades relevantes a automacao, de uma maquina de colocar tampas
em frascos de perfume. Em seguida, o software de controle foi carregado em um CLP fisico
que fazia a comunicacdao com o modelo. Esta comunicacao foi feita por meio do protocolo
TCP/IP, onde o programa do CLP decodificava para decimal os dados em ASCII vindos

do modelo.

O experimento de Tebani et al.(3) faz, de maneira bem sucedida, a comunicagao
em tempo real entre um modelo virtual que simula uma entidade fisica e um CLP real.
O CLP da solugao proposta por este trabalho sera virtual, porém hé a necessidade da

comunicagdo em tempo real para que a simulagao seja satisfatoria.

Para a praticar do uso de CLPs, pesquisadores da Center of Tongji University (4),
China, fizeram o uso da simulagao tanto do CLP, quanto do ambiente. Tendo como resultado
uma ferramenta de simulagao viavel e de menor custo comparada a uma solucao fisica.
Para isso, o CLP virtual utilizado foi o PLCSim, programa de simulagao de CLP criado
pela Siemens, sendo este capaz de executar programas criados para diversos controladores
da empresa (5), facilitando o desenvolvimento de projetos por diminuir a necessidade
de que cada vez que seja necessario testar a implementacao de uma funcionalidade, o
programa de controle tenha de ser carregado para a memoria de um dispositivo fisico.
O ambiente virtual simulava um cruzamento contendo seméaforos em cada uma de suas
diregoes. A construgao do ambiente foi feita utilizando a plataforma Unity(6), que serd
abordada adiante neste trabalho. No ambiente virtual, cada direcao do cruzamento possuia
um semaforo, onde as luzes eram controladas pelo CLP virtual. As lampadas e os botoes
de Start e Stop foram associados cada um a um enderego de 1/O. Os acionamentos vinham
do CLP por meio do protocolo de comunicagao OPC e interpretados dentro do ambiente
da Unity.

O artigo mostrado é relevante ao trabalho por manter o ambiente e o controlador
como dispositivos virtuais comunicando-se em tempo real, porém a aplicagdo apresentada,

mesmo explorando os conceitos de controle de entradas e saidas, nao ¢ um cenério de

Capitulo 2. Revisao Bibliogrifica 17

producao de uma fabrica.

No artigo de Vaananen, Horelli e Katajisto(7), é dito que a melhor maneira de se
ensinar os conceitos de programacao para CLPs, é utilizando dispositivos reais, porém estes
possuem alto preco para ser comprado e poucas possibilidades de alteracoes de cenario.
Uma alternativa viavel é a utilizagdo de ferramentas de simulagao, que sdo mais versateis
em relacao a possibilidades de cenarios e complexidades, além de que "instrumentos virtuais
podem sempre ser operados em um modo basico e o treinamento ser recomecado apds
um possivel distirbio” Vaananen, Horelli e Katajisto(7) e num momento posterior, ser
apresentado os equipamentos reais. Foi criada uma linha de montagem virtual, analoga
a um modelo real disponivel fisicamente, utilizando a ferramenta de desenvolvimento de
ambientes 3D OGRE, Object-Oriented Graphics Rendering Engine.O ambiente virtual
poderia se comunicar com um softPLC contendo o programa de controle. Além da planta
industrial, utilizando o conceito de Hardware in the loop, onde a resposta de hardware para
o controlador ¢é feita por meio de simulagao, foi criada uma simulagao para automacao
residencial contendo sensores como de géas carbonico e fumaga, deteccao de vazamentos,
controle de temperatura e de luzes. O modelo simulava tanto os sistemas dinamicos como a
variacao de temperatura de um ambiente, como o comportamento de moradores interagindo
com os itens da casa e mudando os estados dos equipamentos, como ligar ou desligar

aparelhos.

Segundo o experimento do Vidyalankar Institute of Technology (8), Mumbai, India,
ensinar os conceitos de CLPs, sem que seja possivel que os alunos testem na pratica os
conceitos ensinados em aula, é uma tarefa dificil, "As principais dificuldades no aprendizado
de programacao para CLP utilizando diagramas ladder sao o entendimento dos conceitos e
visualizagao sobre o uso de relés, contatos, chaves etc' (Narayanan e Deshpande(8)). Além
disso, afirma que os kits didaticos para laboratério possuem uma estrutura fixa, o que limita
o numero de problemas propostos. Com isso, "Além de possibilitar o ajuste do curriculo
convencional do curso, um laboratorio virtual possibilita que estudantes desenvolvam seus
proprios programas e identifiquem problemas relacionados a implementagao" (Narayanan
e Deshpande(8)). Nesse estudo, foi desenvolvida uma ferramenta chamada Virtual Lab,
contendo um simulador de Ladder Diagram, onde foi possivel estudar tanto os conceitos de
software e hardware de um CLP. Os experimentos foram montados de forma a introduzir os
conceitos de programacao para CLPs, como operagoes logicas com os contatos de entrada

e uso de contadores e timers, de forma gradativa e intuitiva.

Foi aplicado um questionario para 120 professores de engenharia que fizeram o
curso no laboratoério, a fim de avaliar a ferramenta utilizada. De maneira geral, foi visto
que a ferramenta obteve uma aceitacao positiva, porém menos de metade das respostas
foram positivas sobre a comparacao dos experimentos virtuais com o mundo real. Algumas

caracteristicas da ferramenta foram notadas como, por exemplo, aspectos de seguranga em

Capitulo 2. Revisao Bibliogrifica 18

ambiente real nao considerados no ambiente virtual proposto. Foi notada a possibilidade
dos experimentos virtuais ser mostrados em aula e exercicios pedidos como dever de casa.
Os professores, em seguida, utilizaram a ferramenta em aulas de laboratorio e foi feito outro
questionario com os alunos, tendo também um resultado positivo. Os alunos relataram a
falta de uma reposta mais realista dos componentes. "Eles tiveram a sensacao de que se
sistemas reais como motores, relés, chaves de contato etc, fossem animados e incluidos, a

experiéncia teria sido mais animadora" (Narayanan e Deshpande(8)).

Como resultado, foi visto que os alunos obtiveram alto interesse nas tarefas propostas
e no uso dos materiais de apoio disponiveis. Também notou-se que apds o uso da ferramenta,
o nivel de entendimento dos alunos em relacao aos conceitos do curso foi superior comparado

a0s anos anteriores.

Neste outro estudo da Claude Bernard University Lyon 1, Franca, foi proposto
o uso de um ambiente virtual para o ensino de conceitos da industria 4.0. Para isso,
foi utilizado o FactorylO (9), ferramenta de simulagdo de ambiente de fabrica, dis-
pondo de dispositivos virtuais que simulam equipamentos industriais como esteiras,
sensores, atuadores e robores industriais. O FactorylO possui uma interface amigavel
de um ambiente 3D. O controle dos equipamentos virtuais pode ser feito tanto por
uma interface interna, por meio de rotinas programadas em FDB, quanto por meio
de dispositivos externos, como CLPs fisicos ou virtuais. Foi o utilizado o CodeSys
como ferramenta de desenvolvimento para automacao. O Codesys possibilita tanto es-
crever, quanto executar programas em uma série de linguagens utilizadas em CLPs.

O treinamento foi divido em trés partes. A primeira foi um cenario contendo
uma esteira por onde passavam caixas a serem contadas. O objetivo desta primeira
cena foi a familiarizagdo dos alunos com o programa de simulagao, FacrotylO, e com o
CodeSys, introduzindo conceitos da programacao em Ladder Diagram, uma linguagem
grafica que se estrutura por representar a logica de programacao por meio de contatos
e bobinas de forma andloga a um circuito de relés.(10, p. 37). No segundo cenério, era
necessario transferir duas caixas ao mesmo tempo para o local determinado, para isso
o programa deveria ser escrito em Structured Text, ST, linguagem textual de alto nivel.
Nesse caso, era necessario checar se existia duas caixas na esteira para que o atuador
liberasse a passagem e quando nao houvesse nenhuma, bloquear novamente. No terceiro
cenario era preciso classificar caixas de acordo com seu tamanho, para isso foi requi-
sitado a programacao de uma maquina de estados em ST que executasse essa tarefa.
Ao fim do treinamento, foi aplicada uma pesquisa para os 20 alunos participantes, sendo
perguntas sobre o quao til foi o treinamento e os graus de dificuldade de utilizagao
das ferramentas propostas. Tendo resultados positivos de aceitacdo dos alunos sobre a

ferramentas de simulagao e desenvolvimento e sobre os problemas propostos.

Capitulo 2. Revisao Bibliogrifica 19

2.2 Ferramentas comerciais

2.2.1 COMOS Walkinside

Uma ferramenta utilizada na industria para simular o comportamento de plantas
reais é o COMOS Walkinside(11), distribuida pela empresa de automagao Siemens. O
COMOS Walkinside faz um Digital Twin de uma fabrica, ou seja, replica e simula virtual-
mente todos os componentes e parametros relevantes, criando assim, um gémeo digital de
uma planta. Com isso, é possivel que sejam feitos testes de comportamento do software
do controlador, definir possiveis parametros de funcionamento ou testar a seguranga do

sistema frente a possiveis falhas de componentes.

Figura 1 — COMOS Walkinside

[O SR R e -

Fonte: Siemens(12)

Com o COMOS Walkinside, é possivel treinar os operadores de uma planta que,
por meio de realidade virtual, podem transitar pela planta virtual, Figura 1 e executar
treinamentos de tarefas possivelmente arriscadas de serem feitas no mundo real, como um
protocolo de acao em caso de incéndio ou falha catastrofica de algum componente. Além
disso, segundo a empresa, o COMOS Walkinside proporciona maior disponibilidade da
planta, por trazer mais capacidade de planejamento de paradas, aumento da eficiéncia da

producao e transparéncia nos processos da planta.

A distribui¢ao da ferramenta é feita por meio de licenga dentro do pacote COMOS,
que é a plataforma que faz o gerenciamento de ciclo de vida de uma planta, sendo possivel
fazer o planejamento, das instalagdes desde o fase de projeto; Documentacao dos sistemas,
tanto elétricos, hidraulicos e de automacao e, também o planejamento de manutengoes

preventivas. No contexto didatico, os custos de aquisicao desta ferramenta sao elevados.

Capitulo 2. Revisao Bibliogrifica 20

2.2.2 FactorylO

Outra ferramenta utilizada para a simulagdo de um ambiente de uma fabrica, é o
FactoryIO(9) desenvolvido pela empresa Real Games. Essa ferramenta tras uma série de
componentes virtuais que simulam dispositivos como sensores, esteiras, manipuladores,
tanques, etc. Contém também objetos que podem interagir com estes componentes, como
caixas, pallets e pecas que podem ser montadas. Com estes componentes, é possivel montar
uma grande quantidade de cenarios que simulam um ambiente de producao de uma fabrica
onde se pode aplicar o controle desses componentes utilizando CLPs, como visto na Figura
2(a) que faz referéncia ao médulo de sorting da bancada didatica da Festo, Figura 2(b) .
Pode-se criar aplicagoes simples, como deteccao de um objeto e acionamento e uma esteira,
até aplicacoes mais complexas envolvendo por exemplo controle de nivel de um tanque

por meio do fluxo de entrada e saida de fluido.

(a) Sorter montado no Factory IO. (b) Médulo "MPS sorting station D' da
Festo.

Figura 2 — Uso do FactorylO para representar um modelo fisico

Fonte: (a)-Autor; (b)-Festo(13)

O FactorylO pode se comunicar por meio de uma série de protocolos, como: As
ehternet proprietarias de Allen-Bradley e da Siemens; Com WinSPS-S7 e Grafcet-Studio;
Modbus TCP; OPC Client DA e UA ou por meio de USB 4750 e 4704. Além de poder
ter um editor interno de FBD onde é possivel desenvolver aplicacdes de controle para as
cenas. Cada tipo de comunicacao possui uma licenga especifica sendo a Starter Edition €
36,00 ao ano ou € 99,00 uma tnica vez, que disponibiliza o simulador interno de CLP, a
de menor custo; A Ultimate Edition € 25,00 ao més, € 253,00 ao ano ou € 695,00 uma
vez. A versao que possibilida a comunicagao por Modbus TCP, esta disponivel por € 15,00
ao meés, € 144,00 ou €395,00 uma vez. Valores disponiveis na pagina da desenvolvedora
em Junho de 2021. Além das licencas pagas, a versao Ultimate Fdition é disponivel por
um periodo de teste de 30 dias. Nota-se que o FactorylO é uma poderosa ferramenta para
o estudo de CLPs, porém atualmente tem seu custo elevado para ser adquirido para o uso

em laboratorio.

21

3 Ferramentas Utilizadas

3.1 OpenPLC

Para desenvolver programas para PCs, existem ferramentas usadas tanto para
uma linguagem especifica, como o Dev-C++(14) para linguagem C/C++4, como uma
IDE que serve para diversas linguagens, como o Microsoft visual Studio Code(15). Para
CLPs, geralmente essas solucoes sao proprietarias do fabricante do hardware, como o
PCS7 da Siemens, ou Factory Talk da Rockwell. O OpenPLC (16) é uma ferramenta
de desenvolvimento de software para CLPs que é Open Source e pode gerar programas
para uma série de diferentes CLPs e controladores compativeis com Arduino. Nele é
possivel gerar e simular o funcionamento de programas escritos em Ladder Diagram, LD,
Sequential Flow Charts, SFC, Structured Text,ST e Instruction List, IL. O OpenPLC possui
um modulo de Runtime, onde é possivel executar os programas criados no editor, em
computadores com sistemas operacionais Windows ou Linux. Por conter as caracteristicas
apontadas anteriormente, OpenPLC sera a ferramenta de desenvolvimento dos programas

para CLP utilizada neste trabalho.

Figura 3 — OpenPLC - Ambiente de desenvolvimento

LB Egleas| g BEQilfdikomEE++EE v T

|Projeto | EdJsorterN
Projeto Biblioteca | Debugger

T P > e

Nome Class Tipo Localizagdo Valor Incial Opcéo Documentacs || & Blocos defungio padizo
- Blocos de funcio adicionais

2-1¢f] sem nome
Y
ResD

BOOL HXI000
& Type c

BOOL S4X100.1 Ea

BOOL HXI002 & Aritmética

ocal BOOL SUXI00.3 v || & Tempo
< > 1 Bit-shift

- Bi

Local
Local
Local
Local

- Comparagio
& Character stiing
- Native POUs
- Python POUs
POUs definidos pelo ususrio

ez |

== START =1 & TM =1

2

7 | Config0 ResDinstanced

] SEN1 (B0OL)

] SEN2 (BOOL)

] SEN3 (B0OL)

& sena gooL) < >

] SENs (B0OL)
Buscar Conmsole Logdo CLP:
] SEN6 (B00L)

R N N W N N

] START (BOOL)

&l 10D (ANOI

Fonte: Autor

Capitulo 3. Ferramentas Utilizadas 22

3.2 Unity

A Unity é uma plataforma de desenvolvimento 2D e 3D, contendo ferramentas que
proporcionam a renderizacao, efeitos de iluminacao e simulacao de colisoes entre objetos
dispostos em uma cena. Dentro do ambiente de desenvolvimento, ¢ possivel associar
scripts escritos em C# aos objetos, com isso é possivel que a interacoes entre objetos
sejam calculadas em tempo real, de acordo com o comportamento programado no scripts.
Segundo os criadores (6), a Unity estd presente em 70% entre os 1000 maiores jogos para
plataformas méveis e em 50% dos jogos incluindo consoles, PC e mobile. Neste trabalho, a
Unity sera utilizada como a plataforma para criar as cenas e os objetos que interagem com
os comandos vindos do CLP. O comportamento desses objetos serao programados em C#,
utilizando o Visual Studio Code. Os objetos criados neste ambiente podem ser instanciados
em mais de uma cena, garantindo um carater modular ao conjunto de recursos disponiveis,

mostrados adiante.

Figura 4 — Unity - Ambiente de desenvolvimento

®
]
]
s
s
®
W
w
k]
]
s
A
s
s
®

jay [ClearonBuild ErrorPause Editorv

Fonte: Autor

O Ambiente de desenvolvimento da Unity pode ser disposto conforme a Figura 4,
onde a esquerda estao localizadas as abas que contém a hierarquia do projeto, Figura 5(a),
e a pasta que contém os recursos em detalhe. A direita estd posicionada a aba que detalha
as propriedades do objeto selecionado, Figura 5(b). Ao centro é mostrada a cena que esté

sendo criada, Figura 6, com os seus objetos instanciados a esquerda.

Capitulo 3. Ferramentas Utilizadas 23

tation

(a) Aba de hierarquia do (b) Aba dos recursos
projeto.

Figura 5 — Unity - Detalhe das abas de propriedades utilizadas

Fonte: Autor

Figura 6 — Unity -Detalhe da aba de cena

Hierarchy

+ -

SoDDDDDD

Fonte: Autor

Capitulo 3. Ferramentas Utilizadas 24

3.3 EasyModbus

A EasyModbus (17) é uma biblioteca Open source que implementa o protocolo de
comunicacdo modbus RTU e TCP. A FasyModbus é implementada nas plataformas .Net,
Java e Python. O protocolo modbus (18) é um protocolo de comunicagao industrial do
tipo cliente-servidor, onde o cliente faz a requisicdo de um comando a ser respondido pelo
servidor. Os comandos correspondem a leitura ou gravacao de sinais, podendo ser digitais
inputs, entradas e coils, saidas, ou analégicos registers.

A FEasyModbus possui duas classes principais que possuem métodos e propriedades
proprios. A classe ModbusClient contém os métodos e propriedades dos dispositivos do tipo
cliente, por exemplo: Conexao com o servidor: void Connect(string ipAddress, int port);
Leitura do estado das entradas digitais: bool[] ReadDiscretelnputs(int startingAddress,
int quantity); Escrita em uma bobina: void WriteSingle Coil(int startingAddress, bool
value). A classe ModbusServer, por sua vez, trata das propriedades e métodos do lado
do servidor, contendo propriedades como a porta que sera utilizada para a comunicacao
public int Port ou os estados de cada registrador: public InputRegisters inputRegisters.
Neste trabalho, o protocolo modbus serd o meio de comunicacao entre o CLP e o ambiente

virtual, implementado utilizando a biblioteca FasyModbus

25

4 Solucao proposta

4.1 Visao geral

Como visto anteriormente, é possivel aplicar ferramentas de simulagdo como auxiliar
no ensino de automacao industrial, existem ferramentas que abordam esse tema como o
Factory 10, porém, sao de custo elevado. Este trabalho tem como uma premissa, utilizar
ferramentas gratuitas para o desenvolvimento. Com isso, foi decidido a utilizacao da Unity
como plataforma de desenvolvimento do ambiente virtual e do OpenPLC' como ferramenta

para o criar e executar os programas de controle.

A abordagem de desenvolvimento do ambiente virtual foi a de criar componentes
independentes que podem ser aplicados em diversas cenas, apenas alterando parametros
relevantes, sem que seja necessario mudancgas em sua estrutura. Estes componentes serao
detalhados adiante. Foram criadas cenas onde os componentes foram dispostos de maneira

que pudessem interagir entre si.

Como forma de comunicar o software de controle com o hardware virtual, foi
utilizada a biblioteca EasyModbus para fazer o gerenciamento do protocolo modbus. Sendo

possivel o uso de diversas ferramentas de controle que utilizam este protocolo.

Os comportamentos foram escritos em scripts em C#, pondendo ser acessados
no repositorio do Github (19), que podem ser implementados em mais de um tipo de

componente.

4.2 Projeto de componentes

Nesta secao serao apresentados os componentes utilizados, suas propriedades e
scripts associados. OS componentes utilizados neste trabalho foram escolhidos por serem
de uso comum em aplica¢oes de automacao, além de serem exemplos basicos de utilizagao
de entradas e saidas digitais e analdgicas. Por exemplo, uma esteira é um exemplo de
componente que é acionado por meio do software de controle, que numa aplicacio real é
movida usualmente por motor. Ja o sensor é uma entrada digital que pode representar,
simplificadamente, diversos componentes de deteccao como sensores de presenca ou chaves
de fim de curso. Os enderegos de acionamento e de leitura sao definidos durante a montagem
das cenas. Quando se mantém o ponteiro do mouse sobre um componente, é mostrado seu

endereco associado na interface gréfica.

Capitulo 4. Solugdo proposta 26

4.2.1 Alimentador

O Alimentador, Figura 7, simula o comportamento de um alimentador industrial,
componente que faz o carregamento de materiais em um contexto industrial. No modelo
apresentado neste trabalho, o Alimentador pode ter sua vazao de material definida na

montagem da cena.

Para construir o Alimentador, foi criado um objeto vazio, Empty, que carrega as
propriedades vistas acima, além disso, foram criados trés cubos, objetos do tipo Cube, para
formar a sua estrutura, no cubo da extremidade foi posto um Box Collider, colisor em
caixa, com a propriedade do tipo Trigger, disparo. Ao colocar a propriedade como Trigger,

a Unity ignora o colisor como um corpo rigido e apenas dispara o evento de deteccao.

Tabela 3 — Propriedades do Alimentador

Propriedade Tipo Descrigao

Addr STRING Endereco mostrado na interface grafica

Coil INT Ntumero da coil que ativa o alimentador

Ligado BOOL Estado do alimentador

Rate REAL Velocidade que o Alimentador ird preencher os recipientes
Scripts "Feeder.cs" ; "Show Addr.cs"

Fonte: Autor

Figura 7 — Alimentador

5 rl Feeder

Fonte: Autor

Capitulo 4. Solugdo proposta 27

4.2.2 Balanca

A Balanca, Figura 8, registra a massa dos objetos que estao em contato com a sua
face superior. Além do sensor de massa, neste trabalho, a balanca tem a funcionalidade de
esteira, com isso, € possivel criar cenarios onde a esteira s6 faz a liberacao de um objeto

que atinja determinada massa.

Para a construir a balanca, foi criado um cubo que, além do Box Collider criado
originalmente, foi adicionado outro Box Collider no centro, com a propriedade de Trigger,

com o objetivo de disparar a deteccao do objeto que estd em cima da esteira.

Tabela 4 — Propriedades da Balanca

Propriedade Tipo Descrigao

Addr STRING Endereco mostrado na interface gréfica

Coil INT Numero da coil que ativa a esteira da Balanca

Ligado BOOL Estado do alimentador

Reg INT Numero do registrador que guarda a massa na Balanca
Scripts "Esteira.cs"; "Scale.cs" ; "Show Addr.cs”

Fonte: Autor

Figura 8 — Balanca

Fonte: Autor

Capitulo 4. Solugdo proposta 28

423 Caixa

As Caixas sdo os objetos que sao deslocados nas esteiras e manipulados pelo
manipulador. Estes objetos sao instanciados nas cenas por meio do Spawner. Neste projeto
foram criados quatro tripos de caixas, trés que sao sdlidas, 9(a) e se diferenciam pelas cores
laranja, cinza e verde. Além da caixa do tipo "copo", Figura 9(b) que possui a propriedade

de representar o seu nivel de enchimento.

(b) Copo

Figura 9 — Caixa e Copo

Fonte: Autor

Para contruir as caixas sélidas, foram criados cubos e, em cada tipo de cor, foi
atribuido um material diferente. Para construir a caixa do tipo "copo", foi criado um objeto
vazio, e dentro dele criado um cubo com um material com transparéncia atribuido. Dentro
do cubo transparente, foi colocado um cubo sélido que, por meio da propriedade filled,

tem seu volume alterado.

Tabela 5 — Propriedades da Caixa

Propriedade Tipo Descrigao

changeMass BOOL Caixa esta alterando a massa

changeRate FLOAT Taxa de variagdo da massa

Crane GAMEOBJECT Manipulador que estd movendo a caixa
naCrane BOOL Caixa estd em um Manipulador

naesteira BOOL Caixa estd em movimento em uma esteira
Target VECTORS3 Ponto de destino da caixa

Velocidade FLOAT Velocidade de deslocamento da caixa
Scripts "ObjEsteira"

Fonte: Autor

Capitulo 4. Solugdo proposta 29

Tabela 6 — Propriedades do Copo

Propriedade Tipo Descrigao

Todas as propriedades da Caixa Enchendo BOOL Copo estd enchendo

Filled FLOAT Proporg¢ao de enchimento do Copo
Rate FLOAT Taxa de enchimento do Copo
Scripts "Copo.cs"

Fonte: Autor

4.2.4 Desviador

O Desviador, Figura 10, é um componente adicionado na esteira com o objetivo de
alterar a direcao dos objetos que estao sendo transportados. A construcao do Desviador

foi feita com um cubo redimensionado para as dimensoes desejadas.

Tabela 7 — Propriedades do Desviador

Propriedade Tipo Descrigao

Acionado BOOL Estado do Desviador

Addr STRING Endereco mostrado na interface grafica
Coil INT Ntumero da coil que ativa o alimentador
Scripts "Pivot.cs"; "Show Addr.cs"

Fonte: Autor

Figura 10 — Desviador

l"lpivul $ Scenes l"lpivut
E0 Pivot

Fonte: Autor

4.2.5 Esteira e Rampa

Este projeto contém dois tipos distintos de esteiras transportadoras, a Esteira e a
Rampa. O primeiro tipo, Esteira Figura 11(a), transporta os objetos que estao na parte
de cima somente quando estd acionado. O segundo, Rampa figura 11(b), ndo contém
acionamentos e os objetos sempre irao se deslocar quando estiverem em contato, servindo

CO1IMo um componente passivo.

Capitulo 4. Solugdo proposta 30

Para construir a Esteira, foi criado um cubo como Game Object principal, no qual
o Box Collider foi deslocado da linha de centro, para que o objeto transportado troque
de dire¢ao somente quando esta completamente sobre a segunda esteira. Ao diminuir o
tamanho do colisor, foi necessario criar outro cubo, como filho do principal, para servir de

apoio estrutural.

A Rampa foi construida também com o Boz Collider deslocado, além disso, o cubo
principal foi rotacionado em 15°, e colocado um anteparo para impedir que os objetos

caiam.

Tabela 8 — Propriedades da Esteira

Propriedade Tipo Descrigao

Coil INT Endereco da coil que ativa a Esteira
Ligado BOOL Estado da Esteira

IsRampa BOOL Define se é uma Rampa

Scripts "Esteira.cs"; "Show Addr.cs"

Fonte: Autor

(b) Rampa

Figura 11 — Esteira e Rampa

Fonte: Autor

4.2.6 Manipulador

Neste projeto, o Manipulador, Figura 12 é o componente que da a capacidade de

mover objetos livremente, dentro de seu volume de controle. O manipulador possui trés

Capitulo 4. Solugdo proposta 31

graus de liberdade, sendo dois com atuadores lineares e um angular, Z, Y, ©. Além do

posicionamento, é possivel ativar o atuador que "captura', os objetos em seu alcance.

Para construir o Manipulador foi criado um objeto vazio, Empty, como Game
Object principal, como filhos foi criado um cubo como o eixo Y e um cilindro representando
a junta ©. Como filho da junta, foi adicionado objeto vazio tendo como filho um cubo
como eixo 7, contendo outro objeto vazio com um colisor em modo trigger representando
a garra. Essa estrutura, onde um objeto esta instanciado como filho de outro, foi utilizada
para que a manipulacao das coordenadas seja feita de maneira local, ou seja, é possivel
definir a origem de um objeto filho como o centro do objeto pai. Com isso, quando é feita
a rotacao ou translacao de um objeto pai, as coordenadas locais dos objetos filhos nao se

alteram.

Tabela 9 — Propriedades do Manipulador

Propriedade Tipo Descrigao

Fbk Angle FLOAT Leitura do Angulo © atual

Fbk Y FLOAT Leitura da posigdo atual do eixo Y
Fbk Z FLOAT Leitura da posi¢do atual do eixo Z
Grab BOOL Estado da garra do Manupulador
Grab Coil INT Enderego da Coil da garra

Manual BOOL Modo de operacdo do Manupulador
Reg Angle INT Enderego do Register da junta ©
Reg Y INT Endereco do Register do eixo Y
Reg Z INT Enderego do Register do eixo Z

Set Angle FLOAT Setpoint do Angulo ©

Set Pos Y FLOAT Setpoint da posi¢ao Y

Set Pos Z FLOAT Setpoint da posi¢ao Z

Speed FLOAT Velocidade de movimentagao do Manipulador
Scripts "Crane.cs"

Fonte: Autor

Figura 12 — Manipulador

W Crane) Scenes | i@ Crane

Fonte: Autor

Capitulo 4. Solugdo proposta 32

4.2.7 Piso

O Piso tem o papel de manter a simula¢gdo menos sobrecarregada, destruindo as
caixas que entram em contato com ele, sendo um componente passivo. Para isso, foi criado

um objeto do tipo plano, Plane, contendo um Boz Collider que detecta as colisoes.

Tabela 10 — Propriedades do Piso

Propriedade Tipo Descrigao

Scripts "Destruidor.cs ",
Fonte: Autor

Figura 13 — Piso

Fonte: Autor

4.2.8 Sensor

Os objetos do tipo Sensor, Figura 14, deste projeto sao equipamentos que emitem
um sinal quando um objeto, do tipo que foi definido previamente, passa por sua regiao de
detecgao. Conferindo a este tipo de objeto a caracteristica de um dispositivo de deteccao
(10, p. 7).

O Sensor pode ser configurado atribuindo um valor a varidvel senstype. Com isso o Sensor
pode detectar somente um tipo de caixa (laranja: 1; verde: 2; cinza: 3) ou detectar qualquer

caixa que passe em sua regiao de deteccao (senstype = 0).

Para construir o Sensor, foi criado um cubo onde o seu Box Collider foi definido
como do tipo Trigger e suas dimensoes foram alteradas para cobrir uma regiao além do
cubo original como visto na Figura 14. O Sensor tem sua cor modificada, de azul para

branco, quando esta acionado.

Capitulo 4. Solugdo proposta 33

Tabela 11 — Propriedades do Sensor

Propriedade Tipo Descricao

Addr INT Enderego mostrado na interface grafica
Numero INT Enderego da Discrete Input do Sensor
Senstype INT Modo de detecgdo do Sensor

Scripts "Sensor.cs"; "ShowAddr.cs"

Fonte: Autor

Figura 14 — Sensor

ﬁSEnsur 0 S es h‘lSensur

£ Sensor

Fonte: Autor

4.2.9 Spawner

O Spawner, Figura 15, tem a funcao de ser uma fonte de caixas nas cenas. Quando
ativado, o Spawner cria caixas onde ele esta posicionado. Enquanto houver uma caixa
dentro da sua regiao de criagdo, o Spawner nao ird criar outra caixa, mesmo se estiver
ativado.

E possivel determinar previamente, durante a montagem da cena, sua velocidade e quais

tipos de caixas cada Spawner ira criar.

Para construir o Spawner, foi criado um objeto vazio dentro de um cubo. Este
objeto vazio esta associado ao script que cria as caixas nas cenas. Ele contém um Bozx
Collider do tipo Trigger onde ¢é definida a regiao de criagao das caixas. O cubo contém o
script que mostra o endereco da coil associada ao componente. Foi atribuido um material
translicido ao cubo com o objetvo de indicar visualmente que o Spawner cria caixas, mas

nao é uma.

Capitulo 4. Solugdo proposta 34

Tabela 12 — Propriedades do Spawner

Propriedade Tipo Descricao
Addr INT Endereco mostrado na interface grafica
Coil INT Endereco da Coil do Spawner

Cube Type 1 GAMEOBJECT Primeiro tipo de caixa que a ser criada
Cube Type 2 GAMEOBJECT Segundo tipo de caixa que a ser criada
Cube Type 3 GAMEOBJECT Terceiro tipo de caixa que a ser criada

Contador FLOAT Contador de intervalo de criagdo
Intervalo FLOAT Intervalo de criacdo de caixas
Scripts "Cubespawner.cs"; "ShowAddr.cs"

Fonte: Autor

Figura 15 — Spawner

185 i" BoxSpawner

Fonte: Autor

4210 GUI - Interface Grafica

A Interface Grafica, Figura 16, contém elementos que exibem os estados dos
elementos que podem ser acionados na cena. Quando um equipamento estd ligado, seu
nome na interface grafica é mostrado na cor verde, quando esta desligado, é mostrado
em vermelho. Além de mostrar o estado, é possivel ligar e desligar manualmente estes
equipamentos. Caso o equipamento ter uma saida do tipo analégico, este valor é mostrado
ao lado do nome. Quando o usudrio mantém o ponteiro do mouse sobre algum componente
da cena, o endereco de entrada ou saida associado é mostrado na interface.

Na Interface Grafica, também estao presentes dois botoes, Start e Stop, sendo possivel o

uso como sinais para iniciar ou parar um programa externo.

Para construir a Interface Grafica, primeiro foi criado um elemento do tipo Canvas
onde foram inseridos dois Panels um listando os componentes que podem ser acionados,
cada um com um botao associado a sua respectiva Coil. Esta lista ¢ montada na criagao
da cena, sendo necessario definir o nome e a Coil de cada um dos componentes listados.
O outro Panel contém os botoes que podem ser usados como comandos para programas

externos, associados cada um a uma Discrete Input.

Capitulo 4. Solugdo proposta 35

Figura 16 — GUI

Esteira!

Feeder:

Spawner

Fonte: Autor

4.3 Scripts auxiliares

Cada script deste projeto é responsavel por uma classe que define um compor-
tamento especifico da aplicacao, estes scripts foram escritos em C#, linguagem que a
Unity é capaz de interpretar. Os scripts desenvolvidos neste projeto podem ser vistos neste
repositorio do GitHub 19. Os componentes possuem um ou mais scripts que implementam
as suas propriedades. Um script pode ser usado por mais de um componente diferente
que compartilham a mesma propriedade, como o script "ShowAddr.cs" que implementa a
funcionalidade de exibir o endereco de um componente quando se mantém o ponteiro do
mouse sobre ele, mas pode nao estar associado a nenhum componente de cena, como o

FactoryManager.cs.

Os scripts deste projeto utilizam algumas fungoes nativas do ambiente da Unity,

CcOomao:

Start(): Que ¢é executada uma vez quando um objeto ¢ instanciado. Geralmente

atribui configuracoes relativas ao objeto.

Update(): E executada a cada vez que hd uma atualizacao de quadro na cena. pode
ser utilizada para atualizar os estados do objeto. Adiante neste capitulo, quado é dito que
determinada funcao é executada a cada quadro ou frame, a chamada dessa funcao é feita

por meio da Update().

OnCollisionEnter(Collision co): Esta funcao e suas vari¢oes como OnCollisionS-

tay(Collision co), fazem o tratamento de uma colisdo com um Collider de um objeto.

OnTriggerEnter(Collider co): Faz o tratamento dos disparos dos colisores do tipo

Trigger de um objeto.

O funcionamento de cada script é descrito a seguir e seus respectivos codigos estao

Capitulo 4. Solugdo proposta 36

como apeéndices.

4.3.1 ButtonUl.cs

O script ButtonUl. cs contém a classe ButtonUI que implementa o uso dos botoes

da interface grafica, esta classe possui trés fungoes:

ManChangeState(int coil): Troca o estado da coil selecionada. Este recurso possibi-
lita que o acionamento de um componente, como uma esteira, possa ser feita manualmente

pelo usuario.

ManFlipInput(int input): Troca o estado da discrete input selecionada. Este recurso
possibilita que o estado de uma entrada, como um sensor, possa ser alterado manualmente

pelo usuario.

StartALevel(string levelName) Carrega a cena selecionada.

4.3.2 CameraControl.cs

O script CameraControl.cs possibilita que a camera da cena seja movimentada. A
movimentagao camera é feita por meio das setas. A rotagao é feita ao manter a tecla Shift

pressionada em conjunto com uma seta.

4.3.3 Copo.cs

O script Copo.cs implementa o comportamento da caixa do tipo "Copo". O script
verifica a massa da caixa e faz a atualizacdo da sua coordenada Z local por meio da funcao
fill(). A coordenada Z é vinculada a variavel filled do tipo float que, por sua vez, é a massa

da caixa dividia por 30, sendo limitada entre 0 e 0.95.

4.3.4 Crane.cs

O script Crane.cs faz o controle do posicionamento e da manipulacao de objetos do
manipulador. A cada frame, sao executadas as fungoes: getgrab() ; walk_Y() ; walk_Z() ;
walk__theta() sendo responséveis pela captura de objetos pela garra e pela atualizacao das

posicoes Y, Z e O.

getgrab(): Caso a Coil de atuacao da garra estiver acionada, a préxima caixa
que estiver no volume de alcance da garra sera sinalizada como sendo manipulada pelo

Manipulador.

walk__Y(): Faz a movimentagao do eixo Y em dire¢ao ao setpoint. Para isso, o valor
da coordenada Y local é adicionada de k, valor relacionado ao inverso da distancia entre

a posicao atual e o setpoint. Quando essa diferenca é menor que 0.001, arbitrariamente

Capitulo 4. Solugdo proposta 37

pequena, é assumido que o destino foi alcangado. Caso o limite maximo ou minimo seja

atingido, a propriedade de halo é acionada, simulando uma luz de alerta de fim de curso.

walk__Y(): Faz a movimentagao do eixo Y em diregao ao setpoint. Seu funcionamento

é andlogo a walk__Y().

walk_theta(): Faz a movimentagao da junta © em direcdo ao setpoint. Seu funcio-
namento é andlogo a walk__Y(), porém nao possui limitacao de valor de movimentacao em

seu eixo.

4.3.5 CubeSpawner.cs

O script Crane.cs implementa o Spawner. A cada quadro, é verificado se o Spawner
estd ativado e incrementa o valor de seu contador de tempo de emissao. Caso esse tempo

alcance o limite definido para o objeto, a fun¢ao spawn() é chada.

spawn(): Cria uma instancia de uma caixa dentre os tipos definidos para um
determinado Spawner de forma aleatéria. Depois de instanciada, é definida para uma

massa inicial para a caixa, de forma aleatéria dentro de um limite arbitrario de 1kg a 5kg.

4.3.6 Destruidor.cs

O script Destruidor.cs implementa a fungao de remover os objetos que tocam
o chao. Para isso, cada objeto que entra em contato com o piso, sdo destruidos com o

comando Destroy(co.gameQObject); onde co é o objeto que colidiu com o piso.

4.3.7 Esteira.cs

O script Esteira.cs faz o comportamento da esteira mover as caixas que estdo em
contato. Para isso, quando uma caixa entra em contato com o colisor da esteira, é enviado
uma mensagem para o objeto da caixa, informando o estado da esteira, se esta se movendo
ou nao, este estado é atualizado a cada quadro. Além disso, é informado para a caixa o

ponto para onde deve se mover.

4.3.8 FactoryManager.cs

O script FactoryManager.cs foi criado como controlador de comunicacao ModBus
entre uma cena e o ambiente externo. Todas as interagoes entre os componentes e o que €
externo ao ambiente do programa de simulagao sao concentradas e mediadas pelo objeto
FactoryManager. E por meio dele, que é possivel ler e escrever nos registradores e bobinas
vinculados aos componentes das cenas. Este objeto é "auto instanciado" no sistema quando

algum outro objeto faz uma requisicao a ele, por exemplo, o FactoryManager passa a existir

Capitulo 4. Solugdo proposta 38

no contexto da cena quando um sensor define o seu estado na discrete input vinculada a

ele. A classe FactoryManager contém as seguintes funcoes:
ChecaCoil(int coil): Retorna o valor da bobina coil.
SetCoil(int coil, bool estado): Atribui o valor da varidvel estado & bobina coil.
FlipCoil(int coil): Inverte o valor da bobina coil.

SetReg(int sensor, bool estado): Atribui o valor da variavel estado a discrete input

sensor.
FlipInput(int sensor): Inverte o valor da discrete input sensor.
LelnputReg(int reg): Retorna o valor do registrador de entrada reg.

SetInputReg(int reg, int value): Atribui o valor da variavel value ao registrador de

saida reg.
LeHoldingReg(int reg): Retorna o valor do registrador de saida reg.

stopConnection(): Interrompe o servidor ModBus.

4.3.9 Feeder.cs

O script Feeder.cs implementa o comportamento do Alimentador. Para isso, guarda
qual foi a caixa que entrou em sua regiao de alcance e, a cada quadro, envia a mensagem

de alterar ou nao sua massa e qual é a taxa.

4.3.10 ObjEsteria.cs

O script ObjEsteria.cs implementa o comportamento das Caixas. A cada quadro

sao atualizadas a massa e a posicao da caixa. Este script contém as seguintes funcoes:

UpdateMass(): Caso esteja definido que a caixa deva ter sua massa altera, faz essa

alteragao, de acordo com a taxa atribuida a variavel changeRate;

UpdatePosition(): Caso a caixa esteja em uma esteira ligada, a caixa ird se mover
em dire¢do a um ponto definido pela esteira a esta caixa. Caso esteja sendo movida por
um manipulador, os efeitos da gravidade sao desativados e a sua posi¢ao é a mesma que a

garra do manipulador, deslocada de 0.5 no eixo Y.

FEstadoEsteira(bool estado): Define se a caixa deve se mover ou nao em dire¢ao ao

alvo.

Fill(float rate): Define que a caixa deve ter sua massa alterada e atribui a taxa de

variacao a variavel changeRate, de acordo com a variavel rate;

NoF'ill(): Define que a caixa nao deve ter sua massa alterada.

Capitulo 4. Solugdo proposta 39

4.3.11 PhisAdr.cs

O script Feeder.cs contém a fungdo ShowAddr(string addr), que atribui o valor do

enderco ao texto mostrado na interface gréfica.

4.3.12 Pivot.cs

O script Pivot.cs implementa o comportamento do Desviador. Quando instanciado,
sua posicao inicial ¢ guardada e caso esteja acionado, sua posi¢ao ¢ alterada para desviar
as caixas da esteira, sofrendo um deslocamento de Vector3(-0.025F ,0F -0.695F) e uma

rotagao de Vector3(0,30,0). Quando nao esté acionado, retorna a posigao inicial.

4.3.13 RenderOrder.cs

O script RenderOrder.cs é um auxiliar para que as texturas de um objeto seja
renderizada, criada no quadro, na ordem ordem correta, ou seja, garante que algo que um

componente que esteja dentro de outro, seja representado dentro desse componente.

4.3.14 Scale.cs

O script Scale.cs implementa o comportamento da Balanca. Quando uma caixa
passa por cima da balanga, sua massa ¢ atribuida ao registrador vinculado a esta balanca.

Quando a caixa sai da regiao de trigger, o registrador recebe 0 como valor.

4.3.15 sensor.cs

O script sensor.cs implementa as funcionalidades do Sensor. Para isso, quando
uma objeto dispara o trigger deste sensor, é chamada a funcao checatag(string tag) que
verifica se é uma caixa do tipo que este sensor é capaz de detectar, caso positivo, atribui
true a discrete input vinculada ao sensor. Caso o sensor for do tipo 0, que detecta objetos
de qualquer tipo que entra em contato, a fungdo checatag(string tag) ndo é chamada e
atribui true a sua entrada discreta. Quando ele estd em true, altera a cor para branco.
Quando nao detecta nenhum objeto de seu tipo, mantém a sua discrete input em false e a

sua cor original.

4316 ShowAddr.cs

O script ShowAddr.cs é um auxiliar da interface grafica que, quando se mantém o
ponteiro do mouse sobre um objeto, mostra o valor do seu endereco modbus na interface
grafica. Além de mudar a cor deste objeto para amarelo. Para isso, procura o objeto cujo

nome é "PhisAddr" e atribui a propriedade addr do componente que esta em destaque.

Capitulo 4. Solugdo proposta 40

Quando o mouse nao esta sobre este objeto, sua cor volta ao original e é mostrado "-" na

regiao de endereco da interface grafica.

4.3.17 UpdTextoUl.cs

O script UpdTextoUl. cs implementa o comportamento de indicar o estado de
um componente da cena na interface grafica. Para isso, captura o estado do entrada,
registrador ou bobina associado ao componente e caso seja digital, mostra mostra em
verde ou vermelho se true ou false respectivamente. Caso for um registrador que contém
valores numeéricos, mostra o valor deste registrador, como o valor lido de uma balanca, por

exemplo.

4.4 Projeto de cenas

A construcao de cada cena é feita utilizando os componentes descritos anteriormente.
Cada cena pode ter diversos dispositivos do mesmo tipo, de acordo com a necessidade de
cada aplicacao. Uma cena pode ser montada para um propdésito especifico, como a Cena 1,
que seu proposito é separar os objetos de uma linha, mas também uma cena pode ter mais
de uma aplicagao, como a Cena 2. Animagoes das cenas em execugao estao disponiveis
neste repositério do GitHub (19).

441 Cenal - Sorter

A primeira cena a ser montada no projeto foi a Sorter, inspirada no médulo "MPS
sorting station D" da bancada didatica de treinamento em automagao industrial da Festo.
Esta cena consiste em uma esteira principal que transporta caixas de trés tipos diferentes,
que devem ser separadas cada uma em uma linha especifica que sao rampas. Para isso,
sao posicionados trés sensores na esteira principal, um de presenca, que detecta qualquer
objeto que esteja na sua regiao de alcance, outro que detecta somente caixas do tipo A e
outro somente do tipo B, em analogia aos sensores que sao sensiveis a materiais metalicos
e sensores que sao ativados de acordo com a cor do objeto. Além dos sensores da esteira
principal, sao posicionados sensores de presenca em cada rampa. Na esteira principal,

também sao posicionados desviadores que direcionam as caixas as suas respectivas rampas.

4.42 Cena 2 - Loader | Crane

A Cena 2 é montada de forma que pode ser utilizada para exercicios que envolvem
qualquer combinacao entre o manipulador, balanca e alimentador. Por exemplo, pode-se
desejar que o alimentador carregue uma caixa até determinada massa e seja transportada

entre as esteiras; Pode ser adicionada a tarefa de remover da linha principal, utilizando

Capitulo 4. Solugdo proposta 41

Figura 17 — Visao da Cena 1 Sorter

Esteira:

Spawner:

Pivot1:
Pivot2:

PhisAddr:

Fonte: Autor

o manipulador, as caixas que nao foram carregadas corretamente pelo alimentador; Ou
somente usar o manipulador para mover caixas de uma esteira para outra. Para montar a
Cena 2, foi criada uma esteira principal contendo uma esteira em formato de L, composta
de duas esteiras dispostas perpendicularmente, uma balanca e uma esteira para a entrada
das caixas. Na esteira para entrada, foi colocado um spawner para gerar as caixas e dois
sensores de presenga, um na posicao central e outro posicionado na extremidade oposta ao
spawner. Ao lado da balanga, foi colocado um alimentador e um sensor de presenca. O
manipulador foi posicionado na regiao central de uma das partes da esteira em L, junto a
um sensor de presenca. Préximo ao manipulador, foi posicionada outra esteira formando

uma linha secundéria.

4.5 Programas de controle

Os programas de controle criados sao exemplos de como as cenas podem ser con-
troladas por meio de componentes externos. Os programas foram desenvolvidos utilizando
a ferramenta OpenPLC e utilizando SFCs, Sequential Flow Diagrams. Estes programas
podem ser escritos em outras linguagens de programacao para CLPs, ou mesmo utilizando
outras ferramentas que possuem comunicacdo ModBus TCP, como a propria aplicagao de

demonstracao que esta inclusa ao fazer o download da biblioteca EasyModbus.

No editor do OpenPLC, as variaveis de entrada nos programas de controle, sao
atribuidas & enderecos fisicos utilizando o prefixo IX% para digirais e IW para analdgicas,
as de saida sao QX% e QW. Sendo que, como serdao atribuidas utilizando modbus, o

valor do primeiro enderego ¢ 100.0 para as digitais e 100 para as analdgicas. No lado do

Capitulo 4. Solugdo proposta 42

Figura 18 — Visao da Cena 2 - Loader | Crane

Esteira 1:

Esteira 2:
Esteira 3:
Feeder:

Spawner:

Scale Mot:

Balanca:
PhisAddr:

Fonte: Autor

programa de simulagdo, o primeiro endereco tanto de entrada e saida, digital e analdgica,
¢ 1. Portanto o endereco da entrada digital 100.0 no programa de controle, é a discrete

input 1 da cena.

O Programa 1 foi escrito utilizando todos os recursos disponiveis na cena. Ja os
Programas 2 e 3 utilizam apenas parte dos recursos da cena que fazem controle. Mostrando
assim, que ¢ possivel que a mesma cena possui flexibilidade de tipos de solucdes. E
possivel, também, que a mesma cena seja controlada por mais de um programa de controle

funcionando independentes um do outro.

45.1 Programa 1 - Sorter

O programa de controle da Cena 1 faz o comando da cena utilizando os enderegos da
esteira; dos sensores da esteira principal e das rampas; dos desviadores e do spawner. Além
dos botoes Start e Stop da interface gréafica. Esses enderecos sao vinculados a variaveis,
como mostrado na Figura 19, onde os sensores SEN1, SEN2 e SEN3 sao referentes aos
da esteira pricipal, e os SEN4 SEN5 e SENG sao das rampas. Ha, também, uma varidvel

auxiliar para controle de tempo.

O fluxo do programa, Figura 20, funciona colocando todos os acionamentos em um
estado seguro, desativando todos. Apoés isso, o sistema entra no estado SPAWNING, onde
a esteira e o Spawner sao ligados até que o sensor de presenca seja acionado, iniciando o
estado SORTING que para a esteira e o Spawner, verifica qual é o tipo de caixa detectada.
De acordo com o sensor ativado, o desviador PIVOT1 ou PIVOT?2 é acionado, ou nenhum

dos dois é acionado, caso nem o SEN2 nem o SEN3 estejam ativados. A esteira é ligada e

Capitulo 4. Solugdo proposta 43

Figura 19 — Variaveis do programa de controle do Sorter

Descrigio: | ‘ Class Filter: | Todos ¥
MNome Class Tipo Localizacdo Valor Inicial
1 SENT Local BOOL %IX100.0
2 SEN2 Local BOOL %IX100.1
3 SEN3 Local BOOL %IX100.2
4 SEN4 Local BOOL %IX100.3
5 |SEN5 Local BOOL %IX100.4
6 SENE Local BOOL %IX100.3
7 | START Local BOOL %IX100.6
8 |STOP Local BOOL %IX100.7
§ BELT Local BOOL HQX100.0
10 SPAWN Local BOOL %QX100.1
1 PIVOTI Local BOOL %QX100.2
12 PIVOT2 Local BOOL %QX100.3
13 ™ Local BOOL

Fonte: Autor

o fluxo volta ao inicio.

Figura 20 — Programa de controle do Sorter

N ™ = 0
HIcIO | N PIVOTL := 0f
N PIVOT2 := 0;
== START =1 & TM =1 N BELT := 0;
N SPAWN :=0;
SPAWNING N| BELT = 4 T#lgon'.s =1

SENZ =1 & TM = 1 e SEN3 = 1 & TM = 1
H| PIVCTL := 1; H| PIVCTZ := 1;
TYPE3 TYPEL
H| BELT := 1; H| BELT := 1;
H| SPAWN := 0 N| SPAWHN := 0O;
- SENZ = 1 SENS = 1 —— SENE = 1

Fonte: Autor

4.5.2 Programa 2 - Crane

O programa 2 é uma demonstracao do uso do manipulador, movendo caixas da
esteira principal, para a auxiliar. O programa faz uso do manipulador, do spawner e das

esteiras, Figura 21, porém seu foco de controle estd no manipulador.

O fluxo do programado do manipulador, Figura 22, comeca em uma posicao inicial,
preparado para capturar uma caixa. Quando o sensor SEN1 é ativado, é enviado o comando
para ativar a garra GRAB que captura a caixa, ap6s um tempo de 500ms, é enviado o
comando para os eixos irem para a posicao de de descarga, aguardando 2000ms, a caixa é

solta e retorna ao passo inicial que espera o sinal do sensor.

Capitulo 4. Solugdo proposta 44

Figura 21 — Variaveis do programa de controle da Cena 2 - Manipulador

Descrigdo: | ‘ Class Filter: | Todos o
Nome Class Tipo Localizagdo Walor Inicial
1 |SEN1 Local BOOL %IX100.3
2 |GRAB Local BOOL Q1005]
3 A Local BOOL %QX100.0 1
4 AD Local BOOL %QX100.1 1
5 Al Local BOOL %QX100.2 1
6 AZ Local BOOL %QX100.3 1
7 A3 Local BOOL %0X100.4 1
8 Z Local INT %QW100
9 ¥ Local INT QW01
0 ™ Local INT %Qaw102
11 | Timer Local BOOL

Fonte: Autor

Figura 22 — Programa de controle da Cena 2 - Manipulador

Stepo N|GRAB = 0;
|z := 320;
SEN1 =1
w| ¥ i= 120;
w| TH :=0;

Stelﬂi N GREB = 1;

b Timer :=0:
. o
== timer = 1 i = 1;
£500m Timer := 1;
5‘:7 N Z := 400;
=P W ¥ i= 200;
N TH :=18000;
N Timer := 0;
== Timer = 1 o
L £2000m Timer :=1;
N GRAB := 0;
Step3 N
oy Timer :=0;
o i -1
c#1000ms | THEE T
== Timer = 1

Fonte: Autor

4.5.3 Programa 3 - Loader

O programa 3 utiliza a balanca em conjunto com o alimentador para encher as
caixas do tipo copo criadas pelo spawner, até um valor definido pelo programa de controle.

As variaveis e seus enderecos podem ser visto na Figura 23.

Figura 23 — Variaveis do programa de controle da Cena 2 - Loader

Descrigio: [| Class Fiter: | Todos v
MNome Class Tipo Localizacdo Valor Inicial
1 |ESTEIRA Local BOOL %Q0X100.0
2 SCALEMOT Local BOOL %0X100.1
3 |ESTEIRAZ Local BOOL %0X100.2
4 RESPAWN Local BOOL %0X1003
5 | FEEDER Local BOOL %0QX100.4
6 |SEN1 Local BOOL %l¥100.0
7 |SEN2 Local BOOL %1¢100.1
2 SEN3 Local BOOL %lX100.2
9 SCALE Local INT %IW100
0 |T™ Local BOOL

Fonte: Autor

O programa 3, Figura 24, é iniciado ligando a esteira principal, o motor da balanca e
o spawner. Quando o sensor que estd proximo ao alimentador é ativado, o motor da balanca

¢ desligado e enviado o comando de acionamento do alimentador, que fica ligado até que o

Capitulo 4. Solugdo proposta 45

Figura 24 — Programa de controle da Cena 2 - Loader

ESTEIRA := 1;
RESPAWN :=1:
SCALEMOT := 1;
ESTEIRAZ := 1;
ToSENL =1 N ™ := 0:
N ESTEIRA := 0;
N SCALEMOT := 0:
FILLING
N FEEDER := 1;
T =1
== SCALE > 2000 & TM = 1 |r¢soom ™ =l
| ESTEIRA := 1;
UNLOAD
N |SCALEMOT := 1:
W| FEEDER := 0;
== SEN1 = 0

Fonte: Autor

valor transmitido pela balancga atinja o definido no programa, com isso, o alimentador é

desligado e o motor da balanca religado, e retorna-se ao estado inicial.

46

5 Resultados obtidos

A solugao proposta resultou em um programa de simulagdo de ambiente de fabrica,
utilizando a ferramenta Unity, que pode se comunicar com o ambiente externo por meio
do protocolo modbus. As cenas simuladas funcionaram com éxito onde os componentes
criados interagem entre si, a fim de executar os passos definidos por seus programas de
controle. Ha a possibilidade de posteriormente mais componentes serem criados, além
melhorias serem feitas nos modelos deste trabalho, como aprimoramento grafico e inclusao

de animagoes.

47

6 Comentarios finais

Visto que a solugao obtida neste trabalho executa de forma satisfatéria a proposta
de ser uma ferramenta didatica que auxilia no aprendizado de automagao industrial, pode-
se assumir que é um complemento as bancadas fisicas que sao utilizadas em laboratorio.
Além de ser uma alternativa economicamente viavel as solu¢des comerciais atualmente

existentes.

48

Referencias

1 FENERICK, J. A.; VOLANTE, C. R. Evolucao das industrias, os beneficios da
automacao e as perspectivas do mercado da robética no brasil e no mundo. Revista
Interface Tecnologica, Interface Tecnologica, v. 17, n. 1, p. 734-745, jul. 2020. Disponivel
em: <https://doi.org/10.31510/infa.v17i1.805>. Citado na pagina 13.

2 TIOBE Index | TIOBE - The Software Quality Company. 2020. Disponivel em:
<https://www.tiobe.com/tiobe-index/>. Citado na pagina 13.

3 TEBANI, K. et al. Real-time communication between PLC and Dymola for virtual
commissioning application. In: 2020 4th International Conference on Advanced Systems
and Emergent Technologies (IC_ASET). Hammamet, Tunisia: IEEE, 2020. p. 83-88.
ISBN 9781728163567. Disponivel em: <https://ieeexplore.ieee.org/document /9318223 /> .
Citado 2 vezes nas paginas 15 e 16.

4 WANG, H. et al. Development of three dimensional virtual PLC experiment
model based on unity3d. In: 2017 First International Conference on Electronics
Instrumentation € Information Systems (EILS). IEEE, 2017. Disponivel em:
<https://doi.org/10.1109/eiis.2017.8298660>. Citado na péagina 16.

5 SIEMENS. SIMATIC S7-1500 S7-PLCSIM Advanced Function Manual.
Postfach 48 48 90026 NURNBERG GERMANY, 2016. Disponivel em: <https:
//cache.industry.siemens.com/dl/files/153/109739153 /att__895955/v1/s7-plesim_
advanced_ function manual en-US_en-US.pdf>. Citado na pagina 16.

6 UNITY, T. Unity Real-Time Development Platform | 3D, 2D VR & AR Engine. 2021.
Disponivel em: <https://unity.com/>. Citado 2 vezes nas paginas 16 e 22.

7 VAANANEN, M.; HORELLI, J.; KATAJISTO, J. Virtual learning environment
concept for PLC-programming - case: Building automation. In: 2010 2nd International
Conference on Education Technology and Computer. IEEE, 2010. Disponivel em:
<https://doi.org/10.1109 /icetc.2010.5529409>. Citado na pégina 17.

8 NARAYANAN, G.; DESHPANDE, A. Learning Automation Made Easy through
Virtual Labs. In: 2016 International Conference on Learning and Teaching in Computing
and Engineering (LaTICE). Mumbai, India: IEEE, 2016. p. 60-65. ISBN 9781509025046.
Disponivel em: <http://iecexplore.ieee.org/document /7743154 />. Citado 2 vezes nas
paginas 17 e 18.

9 FACTORY I/O — Next-Gen PLC Training. Disponivel em: <https://factoryio.com/>.
Citado 2 vezes nas paginas 18 e 20.

10 MIYAGI, P. Controle programacvel : fundamentos do controle de sistemas a eventos
discretos. Saao Paulo: Edgard Blucher, 1996. ISBN 852120079X. Citado 2 vezes nas
paginas 18 e 32.

11 COMOS Virtual reality and field operator training. Disponivel em:
<https://new.siemens.com/br/pt/produtos/automacao/software-industria/
software-engenharia-comos/walkinside.html>. Citado na pagina 19.

https://doi.org/10.31510/infa.v17i1.805
https://www.tiobe.com/tiobe-index/
https://ieeexplore.ieee.org/document/9318223/
https://doi.org/10.1109/eiis.2017.8298660
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://unity.com/
https://doi.org/10.1109/icetc.2010.5529409
http://ieeexplore.ieee.org/document/7743154/
https://factoryio.com/
https://new.siemens.com/br/pt/produtos/automacao/software-industria/software-engenharia-comos/walkinside.html
https://new.siemens.com/br/pt/produtos/automacao/software-industria/software-engenharia-comos/walkinside.html

Referéncias 49

12 SIEMENS, S. D. I. S. COMOS Walkinside. 2020. Disponivel em: <https://assets.
new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd 15-fa3le3ecfees/
comos-walkinside.pdf>. Citado na pagina 19.

13 FESTO. MPS sorting station D — Combining opto and inductive sensors

- MPS stations - Learning factory kits - Factory automation & Industry 4.0 -
Learning Systems - Festo Didactic. Disponivel em: <https://www.festo-didactic.
com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/
mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd__
det accessories>. Citado na pagina 20.

14 BLOODSHED Software - Dev-C. 2020. Disponivel em: <https://www.bloodshed.net/
devepp.html>. Citado na pagina 21.

15 VISUAL Studio Code - Code Editing. Redefined. Microsoft, 2016. Disponivel em:
<https://code.visualstudio.com/>. Citado na pagina 21.

16 THE OPENPLC PROJECT | openplcproject.com. Disponivel em: <https:
//www.openplcproject.com/>. Citado na pagina 21.

17 EasymodbusTCP Modbus Library for .NET/Java and Python — Communication
library and professional tools for industrial communication. Disponivel em:
<http://easymodbustcp.net /en/>. Citado na pagina 24.

18 THE Modbus Organization. Disponivel em: <https://modbus.org/>. Citado na
pagina 24.

19 SOARES, W. S. Wessilsoares/TCC _Virtual _FEnv. 2021. Original-date: 2021-07-
14T00:37:29Z. Disponivel em: <https://github.com/Wessilsoares/TCC_ Virtual Env>.
Citado 3 vezes nas paginas 25, 35 e 40.

https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.bloodshed.net/devcpp.html
https://www.bloodshed.net/devcpp.html
https://code.visualstudio.com/
https://www.openplcproject.com/
https://www.openplcproject.com/
http://easymodbustcp.net/en/
https://modbus.org/
https://github.com/Wessilsoares/TCC_Virtual_Env

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação
	Objetivo

	Revisão Bibliográfica
	Trabalhos Relacionados
	Ferramentas comerciais
	COMOS Walkinside
	FactoryIO

	Ferramentas Utilizadas
	OpenPLC
	Unity
	EasyModbus

	Solução proposta
	Visão geral
	Projeto de componentes
	Alimentador
	Balança
	Caixa
	Desviador
	Esteira e Rampa
	Manipulador
	Piso
	Sensor
	Spawner
	GUI - Interface Gráfica

	Scripts auxiliares
	ButtonUI.cs
	CameraControl.cs
	Copo.cs
	Crane.cs
	CubeSpawner.cs
	Destruidor.cs
	Esteira.cs
	FactoryManager.cs
	Feeder.cs
	ObjEsteria.cs
	PhisAdr.cs
	Pivot.cs
	RenderOrder.cs
	Scale.cs
	sensor.cs
	ShowAddr.cs
	UpdTextoUI.cs

	Projeto de cenas
	Cena 1 - Sorter
	Cena 2 - Loader | Crane

	Programas de controle
	Programa 1 - Sorter
	Programa 2 - Crane
	Programa 3 - Loader

	Resultados obtidos
	Comentários finais
	Referências

