
Wesley Silva Soares

Utilização de um ambiente virtual didático para
o ensino de programação para CLPs

Brasil

2021, v-0.1

Wesley Silva Soares

Utilização de um ambiente virtual didático para o ensino
de programação para CLPs

Trabalho de conclusão de curso apresentado
à Escola Politécnica da Universidade de São
Paulo, a fim de obter o título de Engenheiro
Mecatrônico

Universidade de São Paulo – USP

Escola Politécnica

Orientador: Prof. Dr. Marcos Ribeiro Pereira Barretto

Brasil
2021, v-0.1

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

Soares, Wesley
 Utilização de um ambiente virtual didático para o ensino de programação
para CLPs / W. Soares -- São Paulo, 2021.
 50 p.

 Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos.

 1.Treinamento para CLPs 2.Fábrica virtual I.Universidade de São Paulo.
Escola Politécnica. Departamento de Engenharia Mecatrônica e de Sistemas
Mecânicos II.t.

Wesley Silva Soares

Utilização de um ambiente virtual didático para o ensino
de programação para CLPs

Trabalho de conclusão de curso apresentado
à Escola Politécnica da Universidade de São
Paulo, a fim de obter o título de Engenheiro
Mecatrônico

Prof. Dr. Marcos Ribeiro Pereira
Barretto
Orientador

Professor
Convidado 1

Professor
Convidado 2

Brasil
2021, v-0.1

À Aline, por ser a pessoa a quem devo tudo,
ao Jorge, por ser o meu exemplo,
Pamela por estar ao meu lado,

Dedico este trabalho.

Agradecimentos

Primeiramente, agradeço à Deus.

Aos Professores e funcionários do departamento de Engenharia Mecatrônica da
Escola Politécnica, principalmente ao professor Marcos Barretto pela orientação no trabalho.
E ao funcionário Cássio pela disponibilidade e atenção quando precisei.

Agradeço, também, aos meus amigos de longa data, pelo apoio e incentivo durante
a criação deste trabalho.

Resumo
Cada vez mais, processos industriais utilizam alguma forma de automação. O uso de
automação na indústria aumenta a eficiência dos processos, reduzindo custos e uso de
materiais, além de reduzir riscos aos operadores. Para isso, a formação de um profissional
da área deve ser sólida, abrangendo satisfatoriamente os conceitos relevantes ao tema, como
programação de CLPs, Controladores Lógico Programáveis, por exemplo. Atualmente, o
ensino pode ser feito por meio de aparatos físicos em laboratório, que possuem alto custo
financeiro, além de necessitar que o aluno esteja presente no local do experimento. Outra
abordagem é a utilização de ferramentas comerciais de simulação que facilitam o acesso dos
alunos à tipos diferentes cenários de treinamento possíveis, porém, no contexto didático,
também tem custo elevado de aquisição. Visto isso, neste trabalho é proposta uma solução
que pode auxiliar o ensino de automação industrial, de forma virtual e que sua aplicação
seja economicamente viável. Que simula cenas compostas por componentes comuns ao
ambientes de produção industrial. Para isso, foi utilizada a plataforma de desenvolvimento
de simulações 3D Unity e comunicação com controladores externos por meio do protocolo
modbus.

Palavras-chaves: Treinamento para CLPs. Fábrica virtual. Ambiente de aprendizagem.

Abstract
More and more, industrial processes use some type of automation. The use of industrial
automation raises the process efficiency, reducing costs and material needs, in addition to
reducing operating health risks. For that, the formation of a professional in automation must
be solid, covering the subject relevant concepts, like, as an example, PLC (Programmable
Logic Controller) programming, in a satisfactory way. Nowadays, the learning can be done
using laboratory physical components, that have high costs, in addition to the need that
the students have to be in the laboratory. Another approach consists in using commercial
simulation tools, making the student access easier to more possible training scenarios,
however, in a didactic context, also have a high implementation cost. With that said,
in this paper is proposed a solution that can be used as an auxiliary in the teaching
of industrial automation, virtually and being cost effective. Simulating scenes that have
virtual components commonly seen in industrial contexts. For that, the 3D development
engine Unity was used along with the Modbus protocol in order to communicate with
external controllers.

Key-words: PLC Training. Virtual factory. Learning environment.

Lista de ilustrações

Figura 1 – COMOS Walkinside . 19
Figura 2 – Uso do FactoryIO para representar um modelo físico 20
Figura 3 – OpenPLC - Ambiente de desenvolvimento 21
Figura 4 – Unity - Ambiente de desenvolvimento 22
Figura 5 – Unity - Detalhe das abas de propriedades utilizadas 23
Figura 6 – Unity -Detalhe da aba de cena . 23
Figura 7 – Alimentador . 26
Figura 8 – Balança . 27
Figura 9 – Caixa e Copo . 28
Figura 10 – Desviador . 29
Figura 11 – Esteira e Rampa . 30
Figura 12 – Manipulador . 31
Figura 13 – Piso . 32
Figura 14 – Sensor . 33
Figura 15 – Spawner . 34
Figura 16 – GUI . 35
Figura 17 – Visão da Cena 1 Sorter . 41
Figura 18 – Visão da Cena 2 - Loader | Crane . 42
Figura 19 – Variáveis do programa de controle do Sorter 43
Figura 20 – Programa de controle do Sorter . 43
Figura 21 – Variáveis do programa de controle da Cena 2 - Manipulador 44
Figura 22 – Programa de controle da Cena 2 - Manipulador 44
Figura 23 – Variáveis do programa de controle da Cena 2 - Loader 44
Figura 24 – Programa de controle da Cena 2 - Loader 45

Lista de tabelas

Tabela 1 – Resumo das respostas sobre linguagens de programação 14
Tabela 2 – Resumo das respostas sobre linguagens usadas em CLPs 14
Tabela 3 – Propriedades do Alimentador . 26
Tabela 4 – Propriedades da Balança . 27
Tabela 5 – Propriedades da Caixa . 28
Tabela 6 – Propriedades do Copo . 29
Tabela 7 – Propriedades do Desviador . 29
Tabela 8 – Propriedades da Esteira . 30
Tabela 9 – Propriedades do Manipulador . 31
Tabela 10 – Propriedades do Piso . 32
Tabela 11 – Propriedades do Sensor . 33
Tabela 12 – Propriedades do Spawner . 34

Lista de abreviaturas e siglas

CLP Controlador Lógico Programável

LD Ladder Diagram

FBD Function Block Diagram

OPC Open Platform Communications

SFC Sequential Function Chart

ST Structured Text

Sumário

1 INTRODUÇÃO . 13
1.1 Motivação . 13
1.2 Objetivo . 14

2 REVISÃO BIBLIOGRÁFICA . 15
2.1 Trabalhos Relacionados . 15
2.2 Ferramentas comerciais . 19
2.2.1 COMOS Walkinside . 19
2.2.2 FactoryIO . 20

3 FERRAMENTAS UTILIZADAS . 21
3.1 OpenPLC . 21
3.2 Unity . 22
3.3 EasyModbus . 24

4 SOLUÇÃO PROPOSTA . 25
4.1 Visão geral . 25
4.2 Projeto de componentes . 25
4.2.1 Alimentador . 26
4.2.2 Balança . 27
4.2.3 Caixa . 28
4.2.4 Desviador . 29
4.2.5 Esteira e Rampa . 29
4.2.6 Manipulador . 30
4.2.7 Piso . 32
4.2.8 Sensor . 32
4.2.9 Spawner . 33
4.2.10 GUI - Interface Gráfica . 34
4.3 Scripts auxiliares . 35
4.3.1 ButtonUI.cs . 36
4.3.2 CameraControl.cs . 36
4.3.3 Copo.cs . 36
4.3.4 Crane.cs . 36
4.3.5 CubeSpawner.cs . 37
4.3.6 Destruidor.cs . 37
4.3.7 Esteira.cs . 37

4.3.8 FactoryManager.cs . 37
4.3.9 Feeder.cs . 38
4.3.10 ObjEsteria.cs . 38
4.3.11 PhisAdr.cs . 39
4.3.12 Pivot.cs . 39
4.3.13 RenderOrder.cs . 39
4.3.14 Scale.cs . 39
4.3.15 sensor.cs . 39
4.3.16 ShowAddr.cs . 39
4.3.17 UpdTextoUI.cs . 40
4.4 Projeto de cenas . 40
4.4.1 Cena 1 - Sorter . 40
4.4.2 Cena 2 - Loader | Crane . 40
4.5 Programas de controle . 41
4.5.1 Programa 1 - Sorter . 42
4.5.2 Programa 2 - Crane . 43
4.5.3 Programa 3 - Loader . 44

5 RESULTADOS OBTIDOS . 46

6 COMENTÁRIOS FINAIS . 47

REFERÊNCIAS . 48

13

1 Introdução

1.1 Motivação
A indústria está cada vez mais ligada à processos que aplicam alguma forma de

automação. O aumento da eficiência proporcionado por um controle automatizado oferece
redução do custo financeiro, melhora da qualidade de vida dos funcionários e oferece redução
do impacto ambiental, como redução do uso de insumos e de energia. A automatização de
uma planta pode substituir máquinas antigas, pouco eficientes energeticamente, por outras
mais modernas que necessitam de menos energia e com maior produtividade. Atividades
repetitivas, executadas por pessoas, são substituídas por máquinas capazes de trabalhar
com mais velocidade e repetibilidade, evitando que pessoas sejam expostas à potenciais
danos, como lesões por esforço (1). Além disso, o processo automatizado aumenta o nível
de segurança de uma planta industrial, pois pode gerar alertas com antecedência e executar
procedimentos de emergência caso algo esteja fora de parâmetros seguros de operação
previamente estabelecidos. Para isso, uma tecnologia largamente utilizada são os CLPs,
Controladores Lógicos Programáveis, dispositivos que, de acordo com as variáveis de
entrada, executam rotinas pré estabelecidas e geram saídas para controlar um sistema.

Dito isso, para que a formação de um engenheiro que atua na área de automação
seja satisfatória, é necessário que se tenha familiaridade com essas tecnologias.

Em uma enquete com 48 alunos da Escola Politécnica da USP onde 34 informaram
ser da engenharia mecatrônica, 6 da área elétrica e 8 de outras ênfases. Destes alunos,
31,1% estavam no sétimo semestre do curso.

O questionário foi uma autoavaliação sobre o quão familiarizado o aluno se sentia
com linguagens de programação que, segundo o índice TIOBE (2), possuem alta populari-
dade. As respostas poderiam ser: Desconheço; Conheço, mas nunca tive contato; Básico;
Intermediário; Avançado. A Tabela 1 apresenta a porcentagem das respostas que expres-
saram alguma forma de familiaridade, ou seja, básico, intermediário ou avançado. Em
seguida, foi feito o mesmo questionamento, mas relacionado à linguagens de programação
utilizadas em CLPs. O resultado mostrado na Tabela 2.

Pode-se notar que Python e C/C++ são as linguagens de melhores resultados
em familiaridade com os alunos, sendo estas usadas em matérias ao longo do curso de
engenharia. Já, em relação às utilizadas em CLPs, o quadro se inverte e, a maior parte
dos que responderam, afirmam que desconhecem estas linguagens.

Capítulo 1. Introdução 14

Tabela 1 – Resumo das respostas sobre linguagens de programação

Linguagem Familiaridade

Python 93.75%
Java 35.42%
Javascript 31.25%
C/C++ 81.25%
C# 22.92%
VBA 31.25%
PHP 12.50%
Ruby 33.33%

Fonte: Autor

Tabela 2 – Resumo das respostas sobre linguagens usadas em CLPs

Linguagem Familiaridade

Ladder Diagram 60.42%
Sequantial Flow Charts 45.83%
Function Block Diagram 20.83%
Structured Text 18.75%
Instruction List 14.58%

Fonte: Autor

Atualmente, na Escola Politécnica da USP, para aplicar os conceitos de programação
para CLPs, são utilizadas as bancadas didáticas da Festo. Porém, não é possível a sua
utilização fora do período de aula, sendo necessário o acompanhamento de um monitor.
Visto isso, foi proposta a viabilidade da utilização de um ambiente virtual, contendo
elementos de fábrica que interagem com comandos de um controlador, podendo replicar
aspectos das bancadas físicas, por exemplo.

Por não necessitar estar em laboratório, um ambiente virtual é mais acessível à
alunos interessados em ter mais contato com os conceitos expostos em aula, também possui
maior flexibilidade na modificação de cenários onde soluções podem ser aplicadas e, além
disso, elimina o disco de danos, por não possuir componentes físicos.

1.2 Objetivo
Este trabalho tem o objetivo de montar um ambiente virtual de uma fábrica onde

seja possível simular didaticamente a programação de CLPs para controlar processos
de fabricação. Similar, às bancadas didáticas presentes em laboratório, porém com mais
flexibilidade de layout de processos e de acesso por não ser necessário estar presente fisica-
mente para testar o funcionamento. Como prova de conceito, serão montados dois cenários
simulando componentes observados em fábricas, como sensores, esteiras e atuadores. Sendo
possível que um programa externo a este ambiente seja capaz de interagir com os compo-
nentes por meio de um protocolo de comunicação industrial, não sendo necessariamente
possível que este programa "saiba"que não está interagindo com componentes reais.

15

2 Revisão Bibliográfica

Visto que o objetivo do trabalho é de propor uma alternativa às limitações inerentes
ao ensino de programação para CLPs, quando se utiliza somente dispositivos físicos, como
o alto custo dos equipamentos (3) e a necessidade de se estar presente no laboratório, uma
solução possivelmente viável é uma ferramenta que possibilite a simulação de um ambiente
físico; Possa se comunicar com um programa de controle externo em tempo real e que seja
de baixo custo de implantação. Essas características foram resumidas como "Treinamento
para CLPs", "Fábrica virtual"e "Ambiente de aprendizagem". As palavras-chave "PLC
training", "virtual factory", e "learning environment" foram utilizadas nas ferramentas de
busca de artigos científicos Scopus, Google Scholar e IEEE Explorer entre Março e Julho
de 2021, e os artigos apresentados neste trabalho foram selecionados por apresentarem
conceitos relevantes ao tema.

2.1 Trabalhos Relacionados
Segundo,(3), "No contexto da Industria 4.0, um dos maiores desafios é como verificar

e validar complexos sistemas automatizados de manufatura, baseados em novas tecnologias
de fabricas inteligentes". Para eles, por ser geralmente feito nas plantas reais, os teste
com CLPs podem gerar incidentes que vão de atrasos no andamento projeto a danos aos
equipamentos da linha, levando a prejuízos financeiros. Com isso, foi feito o estudo de uma
ferramenta de comissionamento virtual, que funcionasse de forma que a comunicação com
CLP fosse feita em tempo real, a fim de reduzir tempo e custos. "Comissionamento virtual
consiste em replicar o comportamento de um ambiente físico de manufatura usando um
sistema de software com o objetivo de providenciar um ambiente virtual, proporcionando
que engenheiros de automação/robótica possam validar suas lógicas de automação (CLP
ou robô controlador) e HMI (Interface Homem Máquina) antes do comissionamento"Tebani
et al.(3).

O estudo apresenta quatro abordagens que podem ser feitas num comissionamento
de uma planta automatizada. A primeira é testar o funcionamento do CLP utilizando
diretamente o controlador real com os equipamentos da planta, situação que pode causar
danos aos componentes físicos, caso haja algum erro no programa carregado no controlador.
A segunda é chamada de "Software in the Loop", onde um controlador virtual atua sobre
equipamentos também virtuais, que segundo o estudo, é útil para a verificação da robustez
do sistema de controle, porém, como não contém todas as características do sistema real, os
resultados dos testes não são tão confiáveis comparativamente por não sem em tempo real.
A terceira abordagem consiste em testar o CLP real em um ambiente virtual a fim de testar

Capítulo 2. Revisão Bibliográfica 16

o comportamento do controlador antes da sua implementação real. Finalmente, a quarta
abordagem é testar o software de controle em um CLP virtual, ligado aos componentes da
planta real. Esta ultima abordagem leva à riscos parecidos com a primeira abordagem,
por expor os equipamentos da planta à um programa que não foi completamente validado.

O estudo também expõe o conceito de Gêmeo Digital, Digital Twin, onde é feito
um modelo virtual que simula o comportamento de um sistema físico real. Com isso, dados
obtidos no modelo virtual são validados no sistema real, que por sua vez os resultados
são utilizados para aprimorar o modelo. Foi proposta uma abordagem onde um ambiente
virtual, simulando uma planta real, comunicava-se com um CLP físico a fim de testar o
comissionamento do software de controle. Com isso, reduzir o tempo do comissionamento
real. Para isso, foi usado a ferramenta de modelagem Dymola para replicar os componentes
físicos, e suas propriedades relevantes à automação, de uma máquina de colocar tampas
em frascos de perfume. Em seguida, o software de controle foi carregado em um CLP físico
que fazia a comunicação com o modelo. Esta comunicação foi feita por meio do protocolo
TCP/IP, onde o programa do CLP decodificava para decimal os dados em ASCII vindos
do modelo.

O experimento de Tebani et al.(3) faz, de maneira bem sucedida, a comunicação
em tempo real entre um modelo virtual que simula uma entidade física e um CLP real.
O CLP da solução proposta por este trabalho será virtual, porém há a necessidade da
comunicação em tempo real para que a simulação seja satisfatória.

Para a praticar do uso de CLPs, pesquisadores da Center of Tongji University (4),
China, fizeram o uso da simulação tanto do CLP, quanto do ambiente. Tendo como resultado
uma ferramenta de simulação viável e de menor custo comparada à uma solução física.
Para isso, o CLP virtual utilizado foi o PLCSim, programa de simulação de CLP criado
pela Siemens, sendo este capaz de executar programas criados para diversos controladores
da empresa (5), facilitando o desenvolvimento de projetos por diminuir a necessidade
de que cada vez que seja necessário testar a implementação de uma funcionalidade, o
programa de controle tenha de ser carregado para a memória de um dispositivo físico.
O ambiente virtual simulava um cruzamento contendo semáforos em cada uma de suas
direções. A construção do ambiente foi feita utilizando a plataforma Unity(6), que será
abordada adiante neste trabalho. No ambiente virtual, cada direção do cruzamento possuía
um semáforo, onde as luzes eram controladas pelo CLP virtual. As lâmpadas e os botões
de Start e Stop foram associados cada um a um endereço de I/O. Os acionamentos vinham
do CLP por meio do protocolo de comunicação OPC e interpretados dentro do ambiente
da Unity.

O artigo mostrado é relevante ao trabalho por manter o ambiente e o controlador
como dispositivos virtuais comunicando-se em tempo real, porém a aplicação apresentada,
mesmo explorando os conceitos de controle de entradas e saídas, não é um cenário de

Capítulo 2. Revisão Bibliográfica 17

produção de uma fábrica.

No artigo de Vaananen, Horelli e Katajisto(7), é dito que a melhor maneira de se
ensinar os conceitos de programação para CLPs, é utilizando dispositivos reais, porém estes
possuem alto preço para ser comprado e poucas possibilidades de alterações de cenário.
Uma alternativa viável é a utilização de ferramentas de simulação, que são mais versáteis
em relação à possibilidades de cenários e complexidades, além de que "instrumentos virtuais
podem sempre ser operados em um modo básico e o treinamento ser recomeçado após
um possível distúrbio" Vaananen, Horelli e Katajisto(7) e num momento posterior, ser
apresentado os equipamentos reais. Foi criada uma linha de montagem virtual, análoga
a um modelo real disponível fisicamente, utilizando a ferramenta de desenvolvimento de
ambientes 3D OGRE, Object-Oriented Graphics Rendering Engine.O ambiente virtual
poderia se comunicar com um softPLC contendo o programa de controle. Além da planta
industrial, utilizando o conceito de Hardware in the loop, onde a resposta de hardware para
o controlador é feita por meio de simulação, foi criada uma simulação para automação
residencial contendo sensores como de gás carbônico e fumaça, detecção de vazamentos,
controle de temperatura e de luzes. O modelo simulava tanto os sistemas dinâmicos como a
variação de temperatura de um ambiente, como o comportamento de moradores interagindo
com os itens da casa e mudando os estados dos equipamentos, como ligar ou desligar
aparelhos.

Segundo o experimento do Vidyalankar Institute of Technology (8), Mumbai, India,
ensinar os conceitos de CLPs, sem que seja possível que os alunos testem na prática os
conceitos ensinados em aula, é uma tarefa difícil, "As principais dificuldades no aprendizado
de programação para CLP utilizando diagramas ladder são o entendimento dos conceitos e
visualização sobre o uso de relês, contatos, chaves etc" (Narayanan e Deshpande(8)). Além
disso, afirma que os kits didáticos para laboratório possuem uma estrutura fixa, o que limita
o numero de problemas propostos. Com isso, "Além de possibilitar o ajuste do currículo
convencional do curso, um laboratório virtual possibilita que estudantes desenvolvam seus
próprios programas e identifiquem problemas relacionados à implementação" (Narayanan
e Deshpande(8)). Nesse estudo, foi desenvolvida uma ferramenta chamada Virtual Lab,
contendo um simulador de Ladder Diagram, onde foi possível estudar tanto os conceitos de
software e hardware de um CLP. Os experimentos foram montados de forma a introduzir os
conceitos de programação para CLPs, como operações lógicas com os contatos de entrada
e uso de contadores e timers, de forma gradativa e intuitiva.

Foi aplicado um questionário para 120 professores de engenharia que fizeram o
curso no laboratório, a fim de avaliar a ferramenta utilizada. De maneira geral, foi visto
que a ferramenta obteve uma aceitação positiva, porém menos de metade das respostas
foram positivas sobre a comparação dos experimentos virtuais com o mundo real. Algumas
características da ferramenta foram notadas como, por exemplo, aspectos de segurança em

Capítulo 2. Revisão Bibliográfica 18

ambiente real não considerados no ambiente virtual proposto. Foi notada a possibilidade
dos experimentos virtuais ser mostrados em aula e exercícios pedidos como dever de casa.
Os professores, em seguida, utilizaram a ferramenta em aulas de laboratório e foi feito outro
questionário com os alunos, tendo também um resultado positivo. Os alunos relataram a
falta de uma reposta mais realista dos componentes. "Eles tiveram a sensação de que se
sistemas reais como motores, relês, chaves de contato etc, fossem animados e incluídos, a
experiência teria sido mais animadora" (Narayanan e Deshpande(8)).

Como resultado, foi visto que os alunos obtiveram alto interesse nas tarefas propostas
e no uso dos materiais de apoio disponíveis. Também notou-se que após o uso da ferramenta,
o nível de entendimento dos alunos em relação aos conceitos do curso foi superior comparado
aos anos anteriores.

Neste outro estudo da Claude Bernard University Lyon 1, França, foi proposto
o uso de um ambiente virtual para o ensino de conceitos da indústria 4.0. Para isso,
foi utilizado o FactoryIO (9), ferramenta de simulação de ambiente de fábrica, dis-
pondo de dispositivos virtuais que simulam equipamentos industriais como esteiras,
sensores, atuadores e robores industriais. O FactoryIO possui uma interface amigável
de um ambiente 3D. O controle dos equipamentos virtuais pode ser feito tanto por
uma interface interna, por meio de rotinas programadas em FDB, quanto por meio
de dispositivos externos, como CLPs físicos ou virtuais. Foi o utilizado o CodeSys
como ferramenta de desenvolvimento para automação. O Codesys possibilita tanto es-
crever, quanto executar programas em uma série de linguagens utilizadas em CLPs.

O treinamento foi divido em três partes. A primeira foi um cenário contendo
uma esteira por onde passavam caixas a serem contadas. O objetivo desta primeira
cena foi a familiarização dos alunos com o programa de simulação, FacrotyIO, e com o
CodeSys, introduzindo conceitos da programação em Ladder Diagram, uma linguagem
gráfica que se estrutura por representar a lógica de programação por meio de contatos
e bobinas de forma análoga a um circuito de relés.(10, p. 37). No segundo cenário, era
necessário transferir duas caixas ao mesmo tempo para o local determinado, para isso
o programa deveria ser escrito em Structured Text, ST, linguagem textual de alto nível.
Nesse caso, era necessário checar se existia duas caixas na esteira para que o atuador
liberasse a passagem e quando não houvesse nenhuma, bloquear novamente. No terceiro
cenário era preciso classificar caixas de acordo com seu tamanho, para isso foi requi-
sitado a programação de uma maquina de estados em ST que executasse essa tarefa.
Ao fim do treinamento, foi aplicada uma pesquisa para os 20 alunos participantes, sendo
perguntas sobre o quão útil foi o treinamento e os graus de dificuldade de utilização
das ferramentas propostas. Tendo resultados positivos de aceitação dos alunos sobre a
ferramentas de simulação e desenvolvimento e sobre os problemas propostos.

Capítulo 2. Revisão Bibliográfica 19

2.2 Ferramentas comerciais

2.2.1 COMOS Walkinside

Uma ferramenta utilizada na indústria para simular o comportamento de plantas
reais é o COMOS Walkinside(11), distribuída pela empresa de automação Siemens. O
COMOS Walkinside faz um Digital Twin de uma fábrica, ou seja, replica e simula virtual-
mente todos os componentes e parâmetros relevantes, criando assim, um gêmeo digital de
uma planta. Com isso, é possível que sejam feitos testes de comportamento do software
do controlador, definir possíveis parâmetros de funcionamento ou testar a segurança do
sistema frente à possíveis falhas de componentes.

Figura 1 – COMOS Walkinside

Fonte: Siemens(12)

Com o COMOS Walkinside, é possível treinar os operadores de uma planta que,
por meio de realidade virtual, podem transitar pela planta virtual, Figura 1 e executar
treinamentos de tarefas possivelmente arriscadas de serem feitas no mundo real, como um
protocolo de ação em caso de incêndio ou falha catastrófica de algum componente. Além
disso, segundo a empresa, o COMOS Walkinside proporciona maior disponibilidade da
planta, por trazer mais capacidade de planejamento de paradas, aumento da eficiência da
produção e transparência nos processos da planta.

A distribuição da ferramenta é feita por meio de licença dentro do pacote COMOS,
que é a plataforma que faz o gerenciamento de ciclo de vida de uma planta, sendo possível
fazer o planejamento, das instalações desde o fase de projeto; Documentação dos sistemas,
tanto elétricos, hidráulicos e de automação e, também o planejamento de manutenções
preventivas. No contexto didático, os custos de aquisição desta ferramenta são elevados.

Capítulo 2. Revisão Bibliográfica 20

2.2.2 FactoryIO

Outra ferramenta utilizada para a simulação de um ambiente de uma fábrica, é o
FactoryIO(9) desenvolvido pela empresa Real Games. Essa ferramenta trás uma série de
componentes virtuais que simulam dispositivos como sensores, esteiras, manipuladores,
tanques, etc. Contém também objetos que podem interagir com estes componentes, como
caixas, pallets e peças que podem ser montadas. Com estes componentes, é possível montar
uma grande quantidade de cenários que simulam um ambiente de produção de uma fábrica
onde se pode aplicar o controle desses componentes utilizando CLPs, como visto na Figura
2(a) que faz referência ao módulo de sorting da bancada didática da Festo, Figura 2(b) .
Pode-se criar aplicações simples, como detecção de um objeto e acionamento e uma esteira,
até aplicações mais complexas envolvendo por exemplo controle de nível de um tanque
por meio do fluxo de entrada e saída de fluido.

(a) Sorter montado no Factory IO. (b) Módulo "MPS sorting station D" da
Festo.

Figura 2 – Uso do FactoryIO para representar um modelo físico

Fonte: (a)-Autor; (b)-Festo(13)

O FactoryIO pode se comunicar por meio de uma série de protocolos, como: As
ehternet proprietárias de Allen-Bradley e da Siemens; Com WinSPS-S7 e Grafcet-Studio;
Modbus TCP; OPC Client DA e UA ou por meio de USB 4750 e 4704. Além de poder
ter um editor interno de FBD onde é possível desenvolver aplicações de controle para as
cenas. Cada tipo de comunicação possui uma licença específica sendo a Starter Edition e
36,00 ao ano ou e 99,00 uma única vez, que disponibiliza o simulador interno de CLP, a
de menor custo; A Ultimate Edition e 25,00 ao mês, e 253,00 ao ano ou e 695,00 uma
vez. A versão que possibilida a comunicação por Modbus TCP, está disponível por e 15,00
ao mês, e 144,00 ou e395,00 uma vez. Valores disponíveis na página da desenvolvedora
em Junho de 2021. Além das licenças pagas, a versão Ultimate Edition é disponível por
um período de teste de 30 dias. Nota-se que o FactoryIO é uma poderosa ferramenta para
o estudo de CLPs, porém atualmente tem seu custo elevado para ser adquirido para o uso
em laboratório.

21

3 Ferramentas Utilizadas

3.1 OpenPLC
Para desenvolver programas para PCs, existem ferramentas usadas tanto para

uma linguagem específica, como o Dev-C++(14) para linguagem C/C++, como uma
IDE que serve para diversas linguagens, como o Microsoft visual Studio Code(15). Para
CLPs, geralmente essas soluções são proprietárias do fabricante do hardware, como o
PCS7 da Siemens, ou Factory Talk da Rockwell. O OpenPLC (16) é uma ferramenta
de desenvolvimento de software para CLPs que é Open Source e pode gerar programas
para uma série de diferentes CLPs e controladores compatíveis com Arduino. Nele é
possível gerar e simular o funcionamento de programas escritos em Ladder Diagram, LD,
Sequential Flow Charts, SFC, Structured Text,ST e Instruction List, IL. O OpenPLC possui
um módulo de Runtime, onde é possível executar os programas criados no editor, em
computadores com sistemas operacionais Windows ou Linux. Por conter as características
apontadas anteriormente, OpenPLC será a ferramenta de desenvolvimento dos programas
para CLP utilizada neste trabalho.

Figura 3 – OpenPLC - Ambiente de desenvolvimento

Fonte: Autor

Capítulo 3. Ferramentas Utilizadas 22

3.2 Unity
A Unity é uma plataforma de desenvolvimento 2D e 3D, contendo ferramentas que

proporcionam a renderização, efeitos de iluminação e simulação de colisões entre objetos
dispostos em uma cena. Dentro do ambiente de desenvolvimento, é possível associar
scripts escritos em C# aos objetos, com isso é possível que a interações entre objetos
sejam calculadas em tempo real, de acordo com o comportamento programado no scripts.
Segundo os criadores (6), a Unity está presente em 70% entre os 1000 maiores jogos para
plataformas móveis e em 50% dos jogos incluindo consoles, PC e mobile. Neste trabalho, a
Unity será utilizada como a plataforma para criar as cenas e os objetos que interagem com
os comandos vindos do CLP. O comportamento desses objetos serão programados em C#,
utilizando o Visual Studio Code. Os objetos criados neste ambiente podem ser instanciados
em mais de uma cena, garantindo um caráter modular ao conjunto de recursos disponíveis,
mostrados adiante.

Figura 4 – Unity - Ambiente de desenvolvimento

Fonte: Autor

O Ambiente de desenvolvimento da Unity pode ser disposto conforme a Figura 4,
onde à esquerda estão localizadas as abas que contém a hierarquia do projeto, Figura 5(a),
e a pasta que contém os recursos em detalhe. À direita está posicionada a aba que detalha
as propriedades do objeto selecionado, Figura 5(b). Ao centro é mostrada a cena que está
sendo criada, Figura 6, com os seus objetos instanciados à esquerda.

Capítulo 3. Ferramentas Utilizadas 23

(a) Aba de hierarquia do
projeto.

(b) Aba dos recursos

Figura 5 – Unity - Detalhe das abas de propriedades utilizadas

Fonte: Autor

Figura 6 – Unity -Detalhe da aba de cena

Fonte: Autor

Capítulo 3. Ferramentas Utilizadas 24

3.3 EasyModbus
A EasyModbus (17) é uma biblioteca Open source que implementa o protocolo de

comunicação modbus RTU e TCP. A EasyModbus é implementada nas plataformas .Net,
Java e Python. O protocolo modbus (18) é um protocolo de comunicação industrial do
tipo cliente-servidor, onde o cliente faz a requisição de um comando a ser respondido pelo
servidor. Os comandos correspondem a leitura ou gravação de sinais, podendo ser digitais
inputs, entradas e coils, saídas, ou analógicos registers.

A EasyModbus possui duas classes principais que possuem métodos e propriedades
próprios. A classe ModbusClient contém os métodos e propriedades dos dispositivos do tipo
cliente, por exemplo: Conexão com o servidor: void Connect(string ipAddress, int port);
Leitura do estado das entradas digitais: bool[] ReadDiscreteInputs(int startingAddress,
int quantity); Escrita em uma bobina: void WriteSingleCoil(int startingAddress, bool
value). A classe ModbusServer, por sua vez, trata das propriedades e métodos do lado
do servidor, contendo propriedades como a porta que será utilizada para a comunicação
public int Port ou os estados de cada registrador: public InputRegisters inputRegisters.
Neste trabalho, o protocolo modbus será o meio de comunicação entre o CLP e o ambiente
virtual, implementado utilizando a biblioteca EasyModbus

25

4 Solução proposta

4.1 Visão geral
Como visto anteriormente, é possível aplicar ferramentas de simulação como auxiliar

no ensino de automação industrial, existem ferramentas que abordam esse tema como o
Factory IO, porém, são de custo elevado. Este trabalho tem como uma premissa, utilizar
ferramentas gratuitas para o desenvolvimento. Com isso, foi decidido a utilização da Unity
como plataforma de desenvolvimento do ambiente virtual e do OpenPLC como ferramenta
para o criar e executar os programas de controle.

A abordagem de desenvolvimento do ambiente virtual foi a de criar componentes
independentes que podem ser aplicados em diversas cenas, apenas alterando parâmetros
relevantes, sem que seja necessário mudanças em sua estrutura. Estes componentes serão
detalhados adiante. Foram criadas cenas onde os componentes foram dispostos de maneira
que pudessem interagir entre si.

Como forma de comunicar o software de controle com o hardware virtual, foi
utilizada a biblioteca EasyModbus para fazer o gerenciamento do protocolo modbus. Sendo
possível o uso de diversas ferramentas de controle que utilizam este protocolo.

Os comportamentos foram escritos em scripts em C#, pondendo ser acessados
no repositório do Github (19), que podem ser implementados em mais de um tipo de
componente.

4.2 Projeto de componentes
Nesta seção serão apresentados os componentes utilizados, suas propriedades e

scripts associados. OS componentes utilizados neste trabalho foram escolhidos por serem
de uso comum em aplicações de automação, além de serem exemplos básicos de utilização
de entradas e saídas digitais e analógicas. Por exemplo, uma esteira é um exemplo de
componente que é acionado por meio do software de controle, que numa aplicação real é
movida usualmente por motor. Já o sensor é uma entrada digital que pode representar,
simplificadamente, diversos componentes de detecção como sensores de presença ou chaves
de fim de curso. Os endereços de acionamento e de leitura são definidos durante a montagem
das cenas. Quando se mantém o ponteiro do mouse sobre um componente, é mostrado seu
endereço associado na interface gráfica.

Capítulo 4. Solução proposta 26

4.2.1 Alimentador

O Alimentador, Figura 7, simula o comportamento de um alimentador industrial,
componente que faz o carregamento de materiais em um contexto industrial. No modelo
apresentado neste trabalho, o Alimentador pode ter sua vazão de material definida na
montagem da cena.

Para construir o Alimentador, foi criado um objeto vazio, Empty, que carrega as
propriedades vistas acima, além disso, foram criados três cubos, objetos do tipo Cube, para
formar a sua estrutura, no cubo da extremidade foi posto um Box Collider, colisor em
caixa, com a propriedade do tipo Trigger, disparo. Ao colocar a propriedade como Trigger,
a Unity ignora o colisor como um corpo rígido e apenas dispara o evento de detecção.

Tabela 3 – Propriedades do Alimentador

Propriedade Tipo Descrição

Addr STRING Endereço mostrado na interface gráfica
Coil INT Número da coil que ativa o alimentador
Ligado BOOL Estado do alimentador
Rate REAL Velocidade que o Alimentador irá preencher os recipientes
Scripts "Feeder.cs" ; "Show Addr.cs"

Fonte: Autor

Figura 7 – Alimentador

Fonte: Autor

Capítulo 4. Solução proposta 27

4.2.2 Balança

A Balança, Figura 8, registra a massa dos objetos que estão em contato com a sua
face superior. Além do sensor de massa, neste trabalho, a balança tem a funcionalidade de
esteira, com isso, é possível criar cenários onde a esteira só faz a liberação de um objeto
que atinja determinada massa.

Para a construir a balança, foi criado um cubo que, além do Box Collider criado
originalmente, foi adicionado outro Box Collider no centro, com a propriedade de Trigger,
com o objetivo de disparar a detecção do objeto que está em cima da esteira.

Tabela 4 – Propriedades da Balança

Propriedade Tipo Descrição

Addr STRING Endereço mostrado na interface gráfica
Coil INT Número da coil que ativa a esteira da Balança
Ligado BOOL Estado do alimentador
Reg INT Número do registrador que guarda a massa na Balança
Scripts "Esteira.cs"; "Scale.cs" ; "Show Addr.cs"

Fonte: Autor

Figura 8 – Balança

Fonte: Autor

Capítulo 4. Solução proposta 28

4.2.3 Caixa

As Caixas são os objetos que são deslocados nas esteiras e manipulados pelo
manipulador. Estes objetos são instanciados nas cenas por meio do Spawner. Neste projeto
foram criados quatro tripos de caixas, três que são sólidas, 9(a) e se diferenciam pelas cores
laranja, cinza e verde. Além da caixa do tipo "copo", Figura 9(b) que possui a propriedade
de representar o seu nível de enchimento.

(a) Caixa

(b) Copo

Figura 9 – Caixa e Copo

Fonte: Autor

Para contruir as caixas sólidas, foram criados cubos e, em cada tipo de cor, foi
atribuído um material diferente. Para construir a caixa do tipo "copo", foi criado um objeto
vazio, e dentro dele criado um cubo com um material com transparência atribuído. Dentro
do cubo transparente, foi colocado um cubo sólido que, por meio da propriedade filled,
tem seu volume alterado.

Tabela 5 – Propriedades da Caixa

Propriedade Tipo Descrição

changeMass BOOL Caixa está alterando a massa
changeRate FLOAT Taxa de variação da massa
Crane GAMEOBJECT Manipulador que está movendo a caixa
naCrane BOOL Caixa está em um Manipulador
naesteira BOOL Caixa está em movimento em uma esteira
Target VECTOR3 Ponto de destino da caixa
Velocidade FLOAT Velocidade de deslocamento da caixa
Scripts "ObjEsteira"

Fonte: Autor

Capítulo 4. Solução proposta 29

Tabela 6 – Propriedades do Copo

Propriedade Tipo Descrição

Todas as propriedades da Caixa Enchendo BOOL Copo está enchendo
Filled FLOAT Proporção de enchimento do Copo
Rate FLOAT Taxa de enchimento do Copo
Scripts "Copo.cs"

Fonte: Autor

4.2.4 Desviador

O Desviador, Figura 10, é um componente adicionado na esteira com o objetivo de
alterar a direção dos objetos que estão sendo transportados. A construção do Desviador
foi feita com um cubo redimensionado para as dimensões desejadas.

Tabela 7 – Propriedades do Desviador

Propriedade Tipo Descrição

Acionado BOOL Estado do Desviador
Addr STRING Endereço mostrado na interface gráfica
Coil INT Número da coil que ativa o alimentador
Scripts "Pivot.cs"; "Show Addr.cs"

Fonte: Autor

Figura 10 – Desviador

Fonte: Autor

4.2.5 Esteira e Rampa

Este projeto contém dois tipos distintos de esteiras transportadoras, a Esteira e a
Rampa. O primeiro tipo, Esteira Figura 11(a), transporta os objetos que estão na parte
de cima somente quando está acionado. O segundo, Rampa figura 11(b), não contém
acionamentos e os objetos sempre irão se deslocar quando estiverem em contato, servindo
como um componente passivo.

Capítulo 4. Solução proposta 30

Para construir a Esteira, foi criado um cubo como Game Object principal, no qual
o Box Collider foi deslocado da linha de centro, para que o objeto transportado troque
de direção somente quando está completamente sobre a segunda esteira. Ao diminuir o
tamanho do colisor, foi necessário criar outro cubo, como filho do principal, para servir de
apoio estrutural.

A Rampa foi construída também com o Box Collider deslocado, além disso, o cubo
principal foi rotacionado em 15º, e colocado um anteparo para impedir que os objetos
caiam.

Tabela 8 – Propriedades da Esteira

Propriedade Tipo Descrição

Coil INT Endereço da coil que ativa a Esteira
Ligado BOOL Estado da Esteira
IsRampa BOOL Define se é uma Rampa
Scripts "Esteira.cs"; "Show Addr.cs"

Fonte: Autor

(a) Esteira

(b) Rampa

Figura 11 – Esteira e Rampa

Fonte: Autor

4.2.6 Manipulador

Neste projeto, o Manipulador, Figura 12 é o componente que dá a capacidade de
mover objetos livremente, dentro de seu volume de controle. O manipulador possui três

Capítulo 4. Solução proposta 31

graus de liberdade, sendo dois com atuadores lineares e um angular, Z, Y, Θ. Além do
posicionamento, é possível ativar o atuador que "captura", os objetos em seu alcance.

Para construir o Manipulador foi criado um objeto vazio, Empty, como Game
Object principal, como filhos foi criado um cubo como o eixo Y e um cilindro representando
a junta Θ. Como filho da junta, foi adicionado objeto vazio tendo como filho um cubo
como eixo Z, contendo outro objeto vazio com um colisor em modo trigger representando
a garra. Essa estrutura, onde um objeto está instanciado como filho de outro, foi utilizada
para que a manipulação das coordenadas seja feita de maneira local, ou seja, é possível
definir a origem de um objeto filho como o centro do objeto pai. Com isso, quando é feita
a rotação ou translação de um objeto pai, as coordenadas locais dos objetos filhos não se
alteram.

Tabela 9 – Propriedades do Manipulador

Propriedade Tipo Descrição

Fbk Angle FLOAT Leitura do Angulo Θ atual
Fbk Y FLOAT Leitura da posição atual do eixo Y
Fbk Z FLOAT Leitura da posição atual do eixo Z
Grab BOOL Estado da garra do Manupulador
Grab Coil INT Endereço da Coil da garra
Manual BOOL Modo de operação do Manupulador
Reg Angle INT Endereço do Register da junta Θ
Reg Y INT Endereço do Register do eixo Y
Reg Z INT Endereço do Register do eixo Z
Set Angle FLOAT Setpoint do Angulo Θ
Set Pos Y FLOAT Setpoint da posição Y
Set Pos Z FLOAT Setpoint da posição Z
Speed FLOAT Velocidade de movimentação do Manipulador
Scripts "Crane.cs"

Fonte: Autor

Figura 12 – Manipulador

Fonte: Autor

Capítulo 4. Solução proposta 32

4.2.7 Piso

O Piso tem o papel de manter a simulação menos sobrecarregada, destruindo as
caixas que entram em contato com ele, sendo um componente passivo. Para isso, foi criado
um objeto do tipo plano, Plane, contendo um Box Collider que detecta as colisões.

Tabela 10 – Propriedades do Piso

Propriedade Tipo Descrição

Scripts "Destruidor.cs";
Fonte: Autor

Figura 13 – Piso

Fonte: Autor

4.2.8 Sensor

Os objetos do tipo Sensor, Figura 14, deste projeto são equipamentos que emitem
um sinal quando um objeto, do tipo que foi definido previamente, passa por sua região de
detecção. Conferindo a este tipo de objeto a característica de um dispositivo de detecção
(10, p. 7).
O Sensor pode ser configurado atribuindo um valor à variável senstype. Com isso o Sensor
pode detectar somente um tipo de caixa (laranja: 1; verde: 2; cinza: 3) ou detectar qualquer
caixa que passe em sua região de detecção (senstype = 0).

Para construir o Sensor, foi criado um cubo onde o seu Box Collider foi definido
como do tipo Trigger e suas dimensões foram alteradas para cobrir uma região além do
cubo original como visto na Figura 14. O Sensor tem sua cor modificada, de azul para
branco, quando está acionado.

Capítulo 4. Solução proposta 33

Tabela 11 – Propriedades do Sensor

Propriedade Tipo Descrição

Addr INT Endereço mostrado na interface gráfica
Numero INT Endereço da Discrete Input do Sensor
Senstype INT Modo de detecção do Sensor
Scripts "Sensor.cs"; "ShowAddr.cs"

Fonte: Autor

Figura 14 – Sensor

Fonte: Autor

4.2.9 Spawner

O Spawner, Figura 15, tem a função de ser uma fonte de caixas nas cenas. Quando
ativado, o Spawner cria caixas onde ele está posicionado. Enquanto houver uma caixa
dentro da sua região de criação, o Spawner não irá criar outra caixa, mesmo se estiver
ativado.
É possível determinar previamente, durante a montagem da cena, sua velocidade e quais
tipos de caixas cada Spawner irá criar.

Para construir o Spawner, foi criado um objeto vazio dentro de um cubo. Este
objeto vazio está associado ao script que cria as caixas nas cenas. Ele contém um Box
Collider do tipo Trigger onde é definida a região de criação das caixas. O cubo contém o
script que mostra o endereço da coil associada ao componente. Foi atribuído um material
translúcido ao cubo com o objetvo de indicar visualmente que o Spawner cria caixas, mas
não é uma.

Capítulo 4. Solução proposta 34

Tabela 12 – Propriedades do Spawner

Propriedade Tipo Descrição

Addr INT Endereço mostrado na interface gráfica
Coil INT Endereço da Coil do Spawner
Cube Type 1 GAMEOBJECT Primeiro tipo de caixa que a ser criada
Cube Type 2 GAMEOBJECT Segundo tipo de caixa que a ser criada
Cube Type 3 GAMEOBJECT Terceiro tipo de caixa que a ser criada
Contador FLOAT Contador de intervalo de criação
Intervalo FLOAT Intervalo de criação de caixas
Scripts "Cubespawner.cs"; "ShowAddr.cs"

Fonte: Autor

Figura 15 – Spawner

Fonte: Autor

4.2.10 GUI - Interface Gráfica

A Interface Gráfica, Figura 16, contém elementos que exibem os estados dos
elementos que podem ser acionados na cena. Quando um equipamento está ligado, seu
nome na interface gráfica é mostrado na cor verde, quando está desligado, é mostrado
em vermelho. Além de mostrar o estado, é possível ligar e desligar manualmente estes
equipamentos. Caso o equipamento ter uma saída do tipo analógico, este valor é mostrado
ao lado do nome. Quando o usuário mantém o ponteiro do mouse sobre algum componente
da cena, o endereço de entrada ou saída associado é mostrado na interface.
Na Interface Gráfica, também estão presentes dois botões, Start e Stop, sendo possível o
uso como sinais para iniciar ou parar um programa externo.

Para construir a Interface Gráfica, primeiro foi criado um elemento do tipo Canvas
onde foram inseridos dois Panels um listando os componentes que podem ser acionados,
cada um com um botão associado à sua respectiva Coil. Esta lista é montada na criação
da cena, sendo necessário definir o nome e a Coil de cada um dos componentes listados.
O outro Panel contém os botões que podem ser usados como comandos para programas
externos, associados cada um a uma Discrete Input.

Capítulo 4. Solução proposta 35

Figura 16 – GUI

Fonte: Autor

4.3 Scripts auxiliares
Cada script deste projeto é responsável por uma classe que define um compor-

tamento específico da aplicação, estes scripts foram escritos em C#, linguagem que a
Unity é capaz de interpretar. Os scripts desenvolvidos neste projeto podem ser vistos neste
repositório do GitHub 19. Os componentes possuem um ou mais scripts que implementam
as suas propriedades. Um script pode ser usado por mais de um componente diferente
que compartilham a mesma propriedade, como o script "ShowAddr.cs" que implementa a
funcionalidade de exibir o endereço de um componente quando se mantém o ponteiro do
mouse sobre ele, mas pode não estar associado a nenhum componente de cena, como o
FactoryManager.cs.

Os scripts deste projeto utilizam algumas funções nativas do ambiente da Unity,
como:

Start(): Que é executada uma vez quando um objeto é instanciado. Geralmente
atribui configurações relativas ao objeto.

Update(): É executada a cada vez que há uma atualização de quadro na cena. pode
ser utilizada para atualizar os estados do objeto. Adiante neste capítulo, quado é dito que
determinada função é executada a cada quadro ou frame, a chamada dessa função é feita
por meio da Update().

OnCollisionEnter(Collision co): Esta função e suas varições como OnCollisionS-
tay(Collision co), fazem o tratamento de uma colisão com um Collider de um objeto.

OnTriggerEnter(Collider co): Faz o tratamento dos disparos dos colisores do tipo
Trigger de um objeto.

O funcionamento de cada script é descrito a seguir e seus respectivos códigos estão

Capítulo 4. Solução proposta 36

como apêndices.

4.3.1 ButtonUI.cs

O script ButtonUI.cs contém a classe ButtonUI que implementa o uso dos botões
da interface gráfica, esta classe possui três funções:

ManChangeState(int coil): Troca o estado da coil selecionada. Este recurso possibi-
lita que o acionamento de um componente, como uma esteira, possa ser feita manualmente
pelo usuário.

ManFlipInput(int input): Troca o estado da discrete input selecionada. Este recurso
possibilita que o estado de uma entrada, como um sensor, possa ser alterado manualmente
pelo usuário.

StartALevel(string levelName) Carrega a cena selecionada.

4.3.2 CameraControl.cs

O script CameraControl.cs possibilita que a câmera da cena seja movimentada. A
movimentação câmera é feita por meio das setas. A rotação é feita ao manter a tecla Shift
pressionada em conjunto com uma seta.

4.3.3 Copo.cs

O script Copo.cs implementa o comportamento da caixa do tipo "Copo". O script
verifica a massa da caixa e faz a atualização da sua coordenada Z local por meio da função
fill(). A coordenada Z é vinculada à variável filled do tipo float que, por sua vez, é a massa
da caixa dividia por 30, sendo limitada entre 0 e 0.95.

4.3.4 Crane.cs

O script Crane.cs faz o controle do posicionamento e da manipulação de objetos do
manipulador. A cada frame, são executadas as funções: getgrab() ; walk_Y() ; walk_Z() ;
walk_theta() sendo responsáveis pela captura de objetos pela garra e pela atualização das
posições Y, Z e Θ.

getgrab(): Caso a Coil de atuação da garra estiver acionada, a próxima caixa
que estiver no volume de alcance da garra será sinalizada como sendo manipulada pelo
Manipulador.

walk_Y(): Faz a movimentação do eixo Y em direção ao setpoint. Para isso, o valor
da coordenada Y local é adicionada de k, valor relacionado ao inverso da distância entre
a posição atual e o setpoint. Quando essa diferença é menor que 0.001, arbitrariamente

Capítulo 4. Solução proposta 37

pequena, é assumido que o destino foi alcançado. Caso o limite máximo ou mínimo seja
atingido, a propriedade de halo é acionada, simulando uma luz de alerta de fim de curso.

walk_Y(): Faz a movimentação do eixo Y em direção ao setpoint. Seu funcionamento
é análogo à walk_Y().

walk_theta(): Faz a movimentação da junta Θ em direção ao setpoint. Seu funcio-
namento é análogo à walk_Y(), porém não possui limitação de valor de movimentação em
seu eixo.

4.3.5 CubeSpawner.cs

O script Crane.cs implementa o Spawner. A cada quadro, é verificado se o Spawner
está ativado e incrementa o valor de seu contador de tempo de emissão. Caso esse tempo
alcance o limite definido para o objeto, a função spawn() é chada.

spawn(): Cria uma instância de uma caixa dentre os tipos definidos para um
determinado Spawner de forma aleatória. Depois de instanciada, é definida para uma
massa inicial para a caixa, de forma aleatória dentro de um limite arbitrário de 1kg a 5kg.

4.3.6 Destruidor.cs

O script Destruidor.cs implementa a função de remover os objetos que tocam
o chão. Para isso, cada objeto que entra em contato com o piso, são destruídos com o
comando Destroy(co.gameObject); onde co é o objeto que colidiu com o piso.

4.3.7 Esteira.cs

O script Esteira.cs faz o comportamento da esteira mover as caixas que estão em
contato. Para isso, quando uma caixa entra em contato com o colisor da esteira, é enviado
uma mensagem para o objeto da caixa, informando o estado da esteira, se está se movendo
ou não, este estado é atualizado a cada quadro. Além disso, é informado para a caixa o
ponto para onde deve se mover.

4.3.8 FactoryManager.cs

O script FactoryManager.cs foi criado como controlador de comunicação ModBus
entre uma cena e o ambiente externo. Todas as interações entre os componentes e o que é
externo ao ambiente do programa de simulação são concentradas e mediadas pelo objeto
FactoryManager. É por meio dele, que é possível ler e escrever nos registradores e bobinas
vinculados aos componentes das cenas. Este objeto é "auto instanciado" no sistema quando
algum outro objeto faz uma requisição à ele, por exemplo, o FactoryManager passa a existir

Capítulo 4. Solução proposta 38

no contexto da cena quando um sensor define o seu estado na discrete input vinculada a
ele. A classe FactoryManager contém as seguintes funções:

ChecaCoil(int coil): Retorna o valor da bobina coil.

SetCoil(int coil, bool estado): Atribui o valor da variável estado à bobina coil.

FlipCoil(int coil): Inverte o valor da bobina coil.

SetReg(int sensor, bool estado): Atribui o valor da variável estado à discrete input
sensor.

FlipInput(int sensor): Inverte o valor da discrete input sensor.

LeInputReg(int reg): Retorna o valor do registrador de entrada reg.

SetInputReg(int reg, int value): Atribui o valor da variável value ao registrador de
saída reg.

LeHoldingReg(int reg): Retorna o valor do registrador de saída reg.

stopConnection(): Interrompe o servidor ModBus.

4.3.9 Feeder.cs

O script Feeder.cs implementa o comportamento do Alimentador. Para isso, guarda
qual foi a caixa que entrou em sua região de alcance e, a cada quadro, envia a mensagem
de alterar ou não sua massa e qual é a taxa.

4.3.10 ObjEsteria.cs

O script ObjEsteria.cs implementa o comportamento das Caixas. A cada quadro
são atualizadas a massa e a posição da caixa. Este script contém as seguintes funcões:

UpdateMass(): Caso esteja definido que a caixa deva ter sua massa altera, faz essa
alteração, de acordo com a taxa atribuída à variavel changeRate;

UpdatePosition(): Caso a caixa esteja em uma esteira ligada, a caixa irá se mover
em direção a um ponto definido pela esteira à esta caixa. Caso esteja sendo movida por
um manipulador, os efeitos da gravidade são desativados e a sua posição é a mesma que a
garra do manipulador, deslocada de 0.5 no eixo Y.

EstadoEsteira(bool estado): Define se a caixa deve se mover ou não em direção ao
alvo.

Fill(float rate): Define que a caixa deve ter sua massa alterada e atribui a taxa de
variação à variável changeRate, de acordo com a variável rate;

NoFill(): Define que a caixa não deve ter sua massa alterada.

Capítulo 4. Solução proposta 39

4.3.11 PhisAdr.cs

O script Feeder.cs contém a função ShowAddr(string addr), que atribui o valor do
enderço ao texto mostrado na interface gráfica.

4.3.12 Pivot.cs

O script Pivot.cs implementa o comportamento do Desviador. Quando instanciado,
sua posição inicial é guardada e caso esteja acionado, sua posição é alterada para desviar
as caixas da esteira, sofrendo um deslocamento de Vector3(-0.025F,0F,-0.695F) e uma
rotação de Vector3(0,30,0). Quando não está acionado, retorna à posição inicial.

4.3.13 RenderOrder.cs

O script RenderOrder.cs é um auxiliar para que as texturas de um objeto seja
renderizada, criada no quadro, na ordem ordem correta, ou seja, garante que algo que um
componente que esteja dentro de outro, seja representado dentro desse componente.

4.3.14 Scale.cs

O script Scale.cs implementa o comportamento da Balança. Quando uma caixa
passa por cima da balança, sua massa é atribuída ao registrador vinculado à esta balança.
Quando a caixa sai da região de trigger, o registrador recebe 0 como valor.

4.3.15 sensor.cs

O script sensor.cs implementa as funcionalidades do Sensor. Para isso, quando
uma objeto dispara o trigger deste sensor, é chamada a função checatag(string tag) que
verifica se é uma caixa do tipo que este sensor é capaz de detectar, caso positivo, atribui
true à discrete input vinculada ao sensor. Caso o sensor for do tipo 0, que detecta objetos
de qualquer tipo que entra em contato, a função checatag(string tag) não é chamada e
atribui true à sua entrada discreta. Quando ele está em true, altera a cor para branco.
Quando não detecta nenhum objeto de seu tipo, mantém a sua discrete input em false e a
sua cor original.

4.3.16 ShowAddr.cs

O script ShowAddr.cs é um auxiliar da interface gráfica que, quando se mantém o
ponteiro do mouse sobre um objeto, mostra o valor do seu endereço modbus na interface
gráfica. Além de mudar a cor deste objeto para amarelo. Para isso, procura o objeto cujo
nome é "PhisAddr" e atribui a propriedade addr do componente que está em destaque.

Capítulo 4. Solução proposta 40

Quando o mouse não está sobre este objeto, sua cor volta ao original e é mostrado "-" na
região de endereço da interface gráfica.

4.3.17 UpdTextoUI.cs

O script UpdTextoUI.cs implementa o comportamento de indicar o estado de
um componente da cena na interface gráfica. Para isso, captura o estado do entrada,
registrador ou bobina associado ao componente e caso seja digital, mostra mostra em
verde ou vermelho se true ou false respectivamente. Caso for um registrador que contém
valores numéricos, mostra o valor deste registrador, como o valor lido de uma balança, por
exemplo.

4.4 Projeto de cenas
A construção de cada cena é feita utilizando os componentes descritos anteriormente.

Cada cena pode ter diversos dispositivos do mesmo tipo, de acordo com a necessidade de
cada aplicação. Uma cena pode ser montada para um propósito específico, como a Cena 1,
que seu propósito é separar os objetos de uma linha, mas também uma cena pode ter mais
de uma aplicação, como a Cena 2. Animações das cenas em execução estão disponíveis
neste repositório do GitHub (19).

4.4.1 Cena 1 - Sorter

A primeira cena a ser montada no projeto foi a Sorter, inspirada no módulo "MPS
sorting station D" da bancada didática de treinamento em automação industrial da Festo.
Esta cena consiste em uma esteira principal que transporta caixas de três tipos diferentes,
que devem ser separadas cada uma em uma linha específica que são rampas. Para isso,
são posicionados três sensores na esteira principal, um de presença, que detecta qualquer
objeto que esteja na sua região de alcance, outro que detecta somente caixas do tipo A e
outro somente do tipo B, em analogia aos sensores que são sensíveis a materiais metálicos
e sensores que são ativados de acordo com a cor do objeto. Além dos sensores da esteira
principal, são posicionados sensores de presença em cada rampa. Na esteira principal,
também são posicionados desviadores que direcionam as caixas às suas respectivas rampas.

4.4.2 Cena 2 - Loader | Crane

A Cena 2 é montada de forma que pode ser utilizada para exercícios que envolvem
qualquer combinação entre o manipulador, balança e alimentador. Por exemplo, pode-se
desejar que o alimentador carregue uma caixa até determinada massa e seja transportada
entre as esteiras; Pode ser adicionada a tarefa de remover da linha principal, utilizando

Capítulo 4. Solução proposta 41

Figura 17 – Visão da Cena 1 Sorter

Fonte: Autor

o manipulador, as caixas que não foram carregadas corretamente pelo alimentador; Ou
somente usar o manipulador para mover caixas de uma esteira para outra. Para montar a
Cena 2, foi criada uma esteira principal contendo uma esteira em formato de L, composta
de duas esteiras dispostas perpendicularmente, uma balança e uma esteira para a entrada
das caixas. Na esteira para entrada, foi colocado um spawner para gerar as caixas e dois
sensores de presença, um na posição central e outro posicionado na extremidade oposta ao
spawner. Ao lado da balança, foi colocado um alimentador e um sensor de presença. O
manipulador foi posicionado na região central de uma das partes da esteira em L, junto a
um sensor de presença. Próximo ao manipulador, foi posicionada outra esteira formando
uma linha secundária.

4.5 Programas de controle
Os programas de controle criados são exemplos de como as cenas podem ser con-

troladas por meio de componentes externos. Os programas foram desenvolvidos utilizando
a ferramenta OpenPLC e utilizando SFCs, Sequential Flow Diagrams. Estes programas
podem ser escritos em outras linguagens de programação para CLPs, ou mesmo utilizando
outras ferramentas que possuem comunicação ModBus TCP, como a própria aplicação de
demonstração que está inclusa ao fazer o download da biblioteca EasyModbus.

No editor do OpenPLC, as variáveis de entrada nos programas de controle, são
atribuídas à endereços físicos utilizando o prefixo IX% para digirais e IW para analógicas,
as de saída são QX% e QW. Sendo que, como serão atribuídas utilizando modbus, o
valor do primeiro endereço é 100.0 para as digitais e 100 para as analógicas. No lado do

Capítulo 4. Solução proposta 42

Figura 18 – Visão da Cena 2 - Loader | Crane

Fonte: Autor

programa de simulação, o primeiro endereço tanto de entrada e saída, digital e analógica,
é 1. Portanto o endereço da entrada digital 100.0 no programa de controle, é a discrete
input 1 da cena.

O Programa 1 foi escrito utilizando todos os recursos disponíveis na cena. Já os
Programas 2 e 3 utilizam apenas parte dos recursos da cena que fazem controle. Mostrando
assim, que é possível que a mesma cena possui flexibilidade de tipos de soluções. É
possível, também, que a mesma cena seja controlada por mais de um programa de controle
funcionando independentes um do outro.

4.5.1 Programa 1 - Sorter

O programa de controle da Cena 1 faz o comando da cena utilizando os endereços da
esteira; dos sensores da esteira principal e das rampas; dos desviadores e do spawner. Além
dos botões Start e Stop da interface gráfica. Esses endereços são vinculados à variáveis,
como mostrado na Figura 19, onde os sensores SEN1, SEN2 e SEN3 são referentes aos
da esteira pricipal, e os SEN4 SEN5 e SEN6 são das rampas. Há, também, uma variável
auxiliar para controle de tempo.

O fluxo do programa, Figura 20, funciona colocando todos os acionamentos em um
estado seguro, desativando todos. Após isso, o sistema entra no estado SPAWNING, onde
a esteira e o Spawner são ligados até que o sensor de presença seja acionado, iniciando o
estado SORTING que para a esteira e o Spawner, verifica qual é o tipo de caixa detectada.
De acordo com o sensor ativado, o desviador PIVOT1 ou PIVOT2 é acionado, ou nenhum
dos dois é acionado, caso nem o SEN2 nem o SEN3 estejam ativados. A esteira é ligada e

Capítulo 4. Solução proposta 43

Figura 19 – Variáveis do programa de controle do Sorter

Fonte: Autor

o fluxo volta ao início.

Figura 20 – Programa de controle do Sorter

Fonte: Autor

4.5.2 Programa 2 - Crane

O programa 2 é uma demonstração do uso do manipulador, movendo caixas da
esteira principal, para a auxiliar. O programa faz uso do manipulador, do spawner e das
esteiras, Figura 21, porém seu foco de controle está no manipulador.

O fluxo do programado do manipulador, Figura 22, começa em uma posição inicial,
preparado para capturar uma caixa. Quando o sensor SEN1 é ativado, é enviado o comando
para ativar a garra GRAB que captura a caixa, após um tempo de 500ms, é enviado o
comando para os eixos irem para a posição de de descarga, aguardando 2000ms, a caixa é
solta e retorna ao passo inicial que espera o sinal do sensor.

Capítulo 4. Solução proposta 44

Figura 21 – Variáveis do programa de controle da Cena 2 - Manipulador

Fonte: Autor

Figura 22 – Programa de controle da Cena 2 - Manipulador

Fonte: Autor

4.5.3 Programa 3 - Loader

O programa 3 utiliza a balança em conjunto com o alimentador para encher as
caixas do tipo copo criadas pelo spawner, até um valor definido pelo programa de controle.
As variáveis e seus endereços podem ser visto na Figura 23.

Figura 23 – Variáveis do programa de controle da Cena 2 - Loader

Fonte: Autor

O programa 3, Figura 24, é iniciado ligando a esteira principal, o motor da balança e
o spawner. Quando o sensor que está próximo ao alimentador é ativado, o motor da balança
é desligado e enviado o comando de acionamento do alimentador, que fica ligado até que o

Capítulo 4. Solução proposta 45

Figura 24 – Programa de controle da Cena 2 - Loader

Fonte: Autor

valor transmitido pela balança atinja o definido no programa, com isso, o alimentador é
desligado e o motor da balança religado, e retorna-se ao estado inicial.

46

5 Resultados obtidos

A solução proposta resultou em um programa de simulação de ambiente de fábrica,
utilizando a ferramenta Unity, que pode se comunicar com o ambiente externo por meio
do protocolo modbus. As cenas simuladas funcionaram com êxito onde os componentes
criados interagem entre si, a fim de executar os passos definidos por seus programas de
controle. Há a possibilidade de posteriormente mais componentes serem criados, além
melhorias serem feitas nos modelos deste trabalho, como aprimoramento gráfico e inclusão
de animações.

47

6 Comentários finais

Visto que a solução obtida neste trabalho executa de forma satisfatória a proposta
de ser uma ferramenta didática que auxilia no aprendizado de automação industrial, pode-
se assumir que é um complemento às bancadas físicas que são utilizadas em laboratório.
Além de ser uma alternativa economicamente viável às soluções comerciais atualmente
existentes.

48

Referências

1 FENERICK, J. A.; VOLANTE, C. R. Evolução das indústrias, os benefícios da
automação e as perspectivas do mercado da robótica no brasil e no mundo. Revista
Interface Tecnológica, Interface Tecnologica, v. 17, n. 1, p. 734–745, jul. 2020. Disponível
em: <https://doi.org/10.31510/infa.v17i1.805>. Citado na página 13.

2 TIOBE Index | TIOBE - The Software Quality Company. 2020. Disponível em:
<https://www.tiobe.com/tiobe-index/>. Citado na página 13.

3 TEBANI, K. et al. Real-time communication between PLC and Dymola for virtual
commissioning application. In: 2020 4th International Conference on Advanced Systems
and Emergent Technologies (IC_ASET). Hammamet, Tunisia: IEEE, 2020. p. 83–88.
ISBN 9781728163567. Disponível em: <https://ieeexplore.ieee.org/document/9318223/>.
Citado 2 vezes nas páginas 15 e 16.

4 WANG, H. et al. Development of three dimensional virtual PLC experiment
model based on unity3d. In: 2017 First International Conference on Electronics
Instrumentation & Information Systems (EIIS). IEEE, 2017. Disponível em:
<https://doi.org/10.1109/eiis.2017.8298660>. Citado na página 16.

5 SIEMENS. SIMATIC S7-1500 S7-PLCSIM Advanced Function Manual.
Postfach 48 48 90026 NÜRNBERG GERMANY, 2016. Disponível em: <https:
//cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_
advanced_function_manual_en-US_en-US.pdf>. Citado na página 16.

6 UNITY, T. Unity Real-Time Development Platform | 3D, 2D VR & AR Engine. 2021.
Disponível em: <https://unity.com/>. Citado 2 vezes nas páginas 16 e 22.

7 VAANANEN, M.; HORELLI, J.; KATAJISTO, J. Virtual learning environment
concept for PLC-programming - case: Building automation. In: 2010 2nd International
Conference on Education Technology and Computer. IEEE, 2010. Disponível em:
<https://doi.org/10.1109/icetc.2010.5529409>. Citado na página 17.

8 NARAYANAN, G.; DESHPANDE, A. Learning Automation Made Easy through
Virtual Labs. In: 2016 International Conference on Learning and Teaching in Computing
and Engineering (LaTICE). Mumbai, India: IEEE, 2016. p. 60–65. ISBN 9781509025046.
Disponível em: <http://ieeexplore.ieee.org/document/7743154/>. Citado 2 vezes nas
páginas 17 e 18.

9 FACTORY I/O – Next-Gen PLC Training. Disponível em: <https://factoryio.com/>.
Citado 2 vezes nas páginas 18 e 20.

10 MIYAGI, P. Controle programaével : fundamentos do controle de sistemas a eventos
discretos. Saão Paulo: Edgard Blucher, 1996. ISBN 852120079X. Citado 2 vezes nas
páginas 18 e 32.

11 COMOS Virtual reality and field operator training. Disponível em:
<https://new.siemens.com/br/pt/produtos/automacao/software-industria/
software-engenharia-comos/walkinside.html>. Citado na página 19.

https://doi.org/10.31510/infa.v17i1.805
https://www.tiobe.com/tiobe-index/
https://ieeexplore.ieee.org/document/9318223/
https://doi.org/10.1109/eiis.2017.8298660
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/153/109739153/att_895955/v1/s7-plcsim_advanced_function_manual_en-US_en-US.pdf
https://unity.com/
https://doi.org/10.1109/icetc.2010.5529409
http://ieeexplore.ieee.org/document/7743154/
https://factoryio.com/
https://new.siemens.com/br/pt/produtos/automacao/software-industria/software-engenharia-comos/walkinside.html
https://new.siemens.com/br/pt/produtos/automacao/software-industria/software-engenharia-comos/walkinside.html

Referências 49

12 SIEMENS, S. D. I. S. COMOS Walkinside. 2020. Disponível em: <https://assets.
new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/
comos-walkinside.pdf>. Citado na página 19.

13 FESTO. MPS sorting station D – Combining opto and inductive sensors
- MPS stations - Learning factory kits - Factory automation & Industry 4.0 -
Learning Systems - Festo Didactic. Disponível em: <https://www.festo-didactic.
com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/
mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_
det_accessories>. Citado na página 20.

14 BLOODSHED Software - Dev-C. 2020. Disponível em: <https://www.bloodshed.net/
devcpp.html>. Citado na página 21.

15 VISUAL Studio Code - Code Editing. Redefined. Microsoft, 2016. Disponível em:
<https://code.visualstudio.com/>. Citado na página 21.

16 THE OPENPLC PROJECT | openplcproject.com. Disponível em: <https:
//www.openplcproject.com/>. Citado na página 21.

17 EasymodbusTCP Modbus Library for .NET/Java and Python – Communication
library and professional tools for industrial communication. Disponível em:
<http://easymodbustcp.net/en/>. Citado na página 24.

18 THE Modbus Organization. Disponível em: <https://modbus.org/>. Citado na
página 24.

19 SOARES, W. S. Wessilsoares/TCC_Virtual_Env. 2021. Original-date: 2021-07-
14T00:37:29Z. Disponível em: <https://github.com/Wessilsoares/TCC_Virtual_Env>.
Citado 3 vezes nas páginas 25, 35 e 40.

https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:0469b115-a980-4635-bd15-fa31e3ecfee5/comos-walkinside.pdf
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/learning-factory-kits/mps-stations/mps-sorting-station-d-combining-opto-and-inductive-sensors.htm#prd_det_accessories
https://www.bloodshed.net/devcpp.html
https://www.bloodshed.net/devcpp.html
https://code.visualstudio.com/
https://www.openplcproject.com/
https://www.openplcproject.com/
http://easymodbustcp.net/en/
https://modbus.org/
https://github.com/Wessilsoares/TCC_Virtual_Env

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação
	Objetivo

	Revisão Bibliográfica
	Trabalhos Relacionados
	Ferramentas comerciais
	COMOS Walkinside
	FactoryIO

	Ferramentas Utilizadas
	OpenPLC
	Unity
	EasyModbus

	Solução proposta
	Visão geral
	Projeto de componentes
	Alimentador
	Balança
	Caixa
	Desviador
	Esteira e Rampa
	Manipulador
	Piso
	Sensor
	Spawner
	GUI - Interface Gráfica

	Scripts auxiliares
	ButtonUI.cs
	CameraControl.cs
	Copo.cs
	Crane.cs
	CubeSpawner.cs
	Destruidor.cs
	Esteira.cs
	FactoryManager.cs
	Feeder.cs
	ObjEsteria.cs
	PhisAdr.cs
	Pivot.cs
	RenderOrder.cs
	Scale.cs
	sensor.cs
	ShowAddr.cs
	UpdTextoUI.cs

	Projeto de cenas
	Cena 1 - Sorter
	Cena 2 - Loader | Crane

	Programas de controle
	Programa 1 - Sorter
	Programa 2 - Crane
	Programa 3 - Loader

	Resultados obtidos
	Comentários finais
	Referências

